-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmatching.py
483 lines (399 loc) · 19 KB
/
matching.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
import numpy as np
from numba import jit
from tqdm import tqdm
from scipy.optimize import linear_sum_assignment
from skimage.measure import regionprops
from collections import namedtuple
from csbdeep.utils import _raise
matching_criteria = dict()
def label_are_sequential(y):
""" returns true if y has only sequential labels from 1... """
labels = np.unique(y)
return (set(labels)-{0}) == set(range(1,1+labels.max()))
def is_array_of_integers(y):
return isinstance(y,np.ndarray) and np.issubdtype(y.dtype, np.integer)
def _check_label_array(y, name=None, check_sequential=False):
err = ValueError("{label} must be an array of {integers}.".format(
label = 'labels' if name is None else name,
integers = ('sequential ' if check_sequential else '') + 'non-negative integers',
))
is_array_of_integers(y) or _raise(err)
if len(y) == 0:
return True
if check_sequential:
label_are_sequential(y) or _raise(err)
else:
y.min() >= 0 or _raise(err)
return True
def label_overlap(x, y, check=True):
if check:
_check_label_array(x,'x',True)
_check_label_array(y,'y',True)
x.shape == y.shape or _raise(ValueError("x and y must have the same shape"))
return _label_overlap(x, y)
@jit(nopython=True)
def _label_overlap(x, y):
x = x.ravel()
y = y.ravel()
overlap = np.zeros((1+x.max(),1+y.max()), dtype=np.uint)
for i in range(len(x)):
overlap[x[i],y[i]] += 1
return overlap
def _safe_divide(x,y, eps=1e-10):
"""computes a safe divide which returns 0 if y is zero"""
if np.isscalar(x) and np.isscalar(y):
return x/y if np.abs(y)>eps else 0.0
else:
out = np.zeros(np.broadcast(x,y).shape, np.float32)
np.divide(x,y, out=out, where=np.abs(y)>eps)
return out
def intersection_over_union(overlap):
_check_label_array(overlap,'overlap')
if np.sum(overlap) == 0:
return overlap
n_pixels_pred = np.sum(overlap, axis=0, keepdims=True)
n_pixels_true = np.sum(overlap, axis=1, keepdims=True)
return _safe_divide(overlap, (n_pixels_pred + n_pixels_true - overlap))
matching_criteria['iou'] = intersection_over_union
def intersection_over_true(overlap):
_check_label_array(overlap,'overlap')
if np.sum(overlap) == 0:
return overlap
n_pixels_true = np.sum(overlap, axis=1, keepdims=True)
return _safe_divide(overlap, n_pixels_true)
matching_criteria['iot'] = intersection_over_true
def intersection_over_pred(overlap):
_check_label_array(overlap,'overlap')
if np.sum(overlap) == 0:
return overlap
n_pixels_pred = np.sum(overlap, axis=0, keepdims=True)
return _safe_divide(overlap, n_pixels_pred)
matching_criteria['iop'] = intersection_over_pred
def precision(tp,fp,fn):
return tp/(tp+fp) if tp > 0 else 0
def recall(tp,fp,fn):
return tp/(tp+fn) if tp > 0 else 0
def accuracy(tp,fp,fn):
# also known as "average precision" (?)
# -> https://www.kaggle.com/c/data-science-bowl-2018#evaluation
return tp/(tp+fp+fn) if tp > 0 else 0
def f1(tp,fp,fn):
# also known as "dice coefficient"
return (2*tp)/(2*tp+fp+fn) if tp > 0 else 0
def matching(y_true, y_pred, thresh=0.5, criterion='iou', report_matches=False):
"""Calculate detection/instance segmentation metrics between ground truth and predicted label images.
Currently, the following metrics are implemented:
'fp', 'tp', 'fn', 'precision', 'recall', 'accuracy', 'f1', 'criterion', 'thresh', 'n_true', 'n_pred', 'mean_true_score', 'mean_matched_score', 'panoptic_quality'
Corresponding objects of y_true and y_pred are counted as true positives (tp), false positives (fp), and false negatives (fn)
whether their intersection over union (IoU) >= thresh (for criterion='iou', which can be changed)
* mean_matched_score is the mean IoUs of matched true positives
* mean_true_score is the mean IoUs of matched true positives but normalized by the total number of GT objects
* panoptic_quality defined as in Eq. 1 of Kirillov et al. "Panoptic Segmentation", CVPR 2019
Parameters
----------
y_true: ndarray
ground truth label image (integer valued)
y_pred: ndarray
predicted label image (integer valued)
thresh: float
threshold for matching criterion (default 0.5)
criterion: string
matching criterion (default IoU)
report_matches: bool
if True, additionally calculate matched_pairs and matched_scores (note, that this returns even gt-pred pairs whose scores are below 'thresh')
Returns
-------
Matching object with different metrics as attributes
Examples
--------
>>> y_true = np.zeros((100,100), np.uint16)
>>> y_true[10:20,10:20] = 1
>>> y_pred = np.roll(y_true,5,axis = 0)
>>> stats = matching(y_true, y_pred)
>>> print(stats)
Matching(criterion='iou', thresh=0.5, fp=1, tp=0, fn=1, precision=0, recall=0, accuracy=0, f1=0, n_true=1, n_pred=1, mean_true_score=0.0, mean_matched_score=0.0, panoptic_quality=0.0)
"""
_check_label_array(y_true,'y_true')
_check_label_array(y_pred,'y_pred')
y_true.shape == y_pred.shape or _raise(ValueError("y_true ({y_true.shape}) and y_pred ({y_pred.shape}) have different shapes".format(y_true=y_true, y_pred=y_pred)))
criterion in matching_criteria or _raise(ValueError("Matching criterion '%s' not supported." % criterion))
if thresh is None: thresh = 0
thresh = float(thresh) if np.isscalar(thresh) else map(float,thresh)
y_true, _, map_rev_true = relabel_sequential(y_true)
y_pred, _, map_rev_pred = relabel_sequential(y_pred)
overlap = label_overlap(y_true, y_pred, check=False)
scores = matching_criteria[criterion](overlap)
assert 0 <= np.min(scores) <= np.max(scores) <= 1
# ignoring background
scores = scores[1:,1:]
n_true, n_pred = scores.shape
n_matched = min(n_true, n_pred)
def _single(thr):
# not_trivial = n_matched > 0 and np.any(scores >= thr)
not_trivial = n_matched > 0
if not_trivial:
# compute optimal matching with scores as tie-breaker
costs = -(scores >= thr).astype(float) - scores / (2*n_matched)
true_ind, pred_ind = linear_sum_assignment(costs)
assert n_matched == len(true_ind) == len(pred_ind)
match_ok = scores[true_ind,pred_ind] >= thr
tp = np.count_nonzero(match_ok)
else:
tp = 0
fp = n_pred - tp
fn = n_true - tp
# assert tp+fp == n_pred
# assert tp+fn == n_true
# the score sum over all matched objects (tp)
sum_matched_score = np.sum(scores[true_ind,pred_ind][match_ok]) if not_trivial else 0.0
# the score average over all matched objects (tp)
mean_matched_score = _safe_divide(sum_matched_score, tp)
# the score average over all gt/true objects
mean_true_score = _safe_divide(sum_matched_score, n_true)
panoptic_quality = _safe_divide(sum_matched_score, tp+fp/2+fn/2)
stats_dict = dict (
criterion = criterion,
thresh = thr,
fp = fp,
tp = tp,
fn = fn,
precision = precision(tp,fp,fn),
recall = recall(tp,fp,fn),
accuracy = accuracy(tp,fp,fn),
f1 = f1(tp,fp,fn),
n_true = n_true,
n_pred = n_pred,
mean_true_score = mean_true_score,
mean_matched_score = mean_matched_score,
panoptic_quality = panoptic_quality,
)
if bool(report_matches):
if not_trivial:
stats_dict.update (
# int() to be json serializable
matched_pairs = tuple((int(map_rev_true[i]),int(map_rev_pred[j])) for i,j in zip(1+true_ind,1+pred_ind)),
matched_scores = tuple(scores[true_ind,pred_ind]),
matched_tps = tuple(map(int,np.flatnonzero(match_ok))),
)
else:
stats_dict.update (
matched_pairs = (),
matched_scores = (),
matched_tps = (),
)
return namedtuple('Matching',stats_dict.keys())(*stats_dict.values())
return _single(thresh) if np.isscalar(thresh) else tuple(map(_single,thresh))
def matching_dataset(y_true, y_pred, thresh=0.5, criterion='iou', by_image=False, show_progress=True, parallel=False):
"""matching metrics for list of images, see `stardist.matching.matching`
"""
len(y_true) == len(y_pred) or _raise(ValueError("y_true and y_pred must have the same length."))
return matching_dataset_lazy (
tuple(zip(y_true,y_pred)), thresh=thresh, criterion=criterion, by_image=by_image, show_progress=show_progress, parallel=parallel,
)
def matching_dataset_lazy(y_gen, thresh=0.5, criterion='iou', by_image=False, show_progress=True, parallel=False):
expected_keys = set(('fp', 'tp', 'fn', 'precision', 'recall', 'accuracy', 'f1', 'criterion', 'thresh', 'n_true', 'n_pred', 'mean_true_score', 'mean_matched_score', 'panoptic_quality'))
single_thresh = False
if np.isscalar(thresh):
single_thresh = True
thresh = (thresh,)
tqdm_kwargs = {}
tqdm_kwargs['disable'] = not bool(show_progress)
if int(show_progress) > 1:
tqdm_kwargs['total'] = int(show_progress)
# compute matching stats for every pair of label images
if parallel:
from concurrent.futures import ThreadPoolExecutor
fn = lambda pair: matching(*pair, thresh=thresh, criterion=criterion, report_matches=False)
with ThreadPoolExecutor() as pool:
stats_all = tuple(pool.map(fn, tqdm(y_gen,**tqdm_kwargs)))
else:
stats_all = tuple (
matching(y_t, y_p, thresh=thresh, criterion=criterion, report_matches=False)
for y_t,y_p in tqdm(y_gen,**tqdm_kwargs)
)
# accumulate results over all images for each threshold separately
n_images, n_threshs = len(stats_all), len(thresh)
accumulate = [{} for _ in range(n_threshs)]
for stats in stats_all:
for i,s in enumerate(stats):
acc = accumulate[i]
for k,v in s._asdict().items():
if k == 'mean_true_score' and not bool(by_image):
# convert mean_true_score to "sum_matched_score"
acc[k] = acc.setdefault(k,0) + v * s.n_true
else:
try:
acc[k] = acc.setdefault(k,0) + v
except TypeError:
pass
# normalize/compute 'precision', 'recall', 'accuracy', 'f1'
for thr,acc in zip(thresh,accumulate):
set(acc.keys()) == expected_keys or _raise(ValueError("unexpected keys"))
acc['criterion'] = criterion
acc['thresh'] = thr
acc['by_image'] = bool(by_image)
if bool(by_image):
for k in ('precision', 'recall', 'accuracy', 'f1', 'mean_true_score', 'mean_matched_score', 'panoptic_quality'):
acc[k] /= n_images
else:
tp, fp, fn, n_true = acc['tp'], acc['fp'], acc['fn'], acc['n_true']
sum_matched_score = acc['mean_true_score']
mean_matched_score = _safe_divide(sum_matched_score, tp)
mean_true_score = _safe_divide(sum_matched_score, n_true)
panoptic_quality = _safe_divide(sum_matched_score, tp+fp/2+fn/2)
acc.update(
precision = precision(tp,fp,fn),
recall = recall(tp,fp,fn),
accuracy = accuracy(tp,fp,fn),
f1 = f1(tp,fp,fn),
mean_true_score = mean_true_score,
mean_matched_score = mean_matched_score,
panoptic_quality = panoptic_quality,
)
accumulate = tuple(namedtuple('DatasetMatching',acc.keys())(*acc.values()) for acc in accumulate)
return accumulate[0] if single_thresh else accumulate
# copied from scikit-image master for now (remove when part of a release)
def relabel_sequential(label_field, offset=1):
"""Relabel arbitrary labels to {`offset`, ... `offset` + number_of_labels}.
This function also returns the forward map (mapping the original labels to
the reduced labels) and the inverse map (mapping the reduced labels back
to the original ones).
Parameters
----------
label_field : numpy array of int, arbitrary shape
An array of labels, which must be non-negative integers.
offset : int, optional
The return labels will start at `offset`, which should be
strictly positive.
Returns
-------
relabeled : numpy array of int, same shape as `label_field`
The input label field with labels mapped to
{offset, ..., number_of_labels + offset - 1}.
The data type will be the same as `label_field`, except when
offset + number_of_labels causes overflow of the current data type.
forward_map : numpy array of int, shape ``(label_field.max() + 1,)``
The map from the original label space to the returned label
space. Can be used to re-apply the same mapping. See examples
for usage. The data type will be the same as `relabeled`.
inverse_map : 1D numpy array of int, of length offset + number of labels
The map from the new label space to the original space. This
can be used to reconstruct the original label field from the
relabeled one. The data type will be the same as `relabeled`.
Notes
-----
The label 0 is assumed to denote the background and is never remapped.
The forward map can be extremely big for some inputs, since its
length is given by the maximum of the label field. However, in most
situations, ``label_field.max()`` is much smaller than
``label_field.size``, and in these cases the forward map is
guaranteed to be smaller than either the input or output images.
Examples
--------
>>> from skimage.segmentation import relabel_sequential
>>> label_field = np.array([1, 1, 5, 5, 8, 99, 42])
>>> relab, fw, inv = relabel_sequential(label_field)
>>> relab
array([1, 1, 2, 2, 3, 5, 4])
>>> fw
array([0, 1, 0, 0, 0, 2, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5])
>>> inv
array([ 0, 1, 5, 8, 42, 99])
>>> (fw[label_field] == relab).all()
True
>>> (inv[relab] == label_field).all()
True
>>> relab, fw, inv = relabel_sequential(label_field, offset=5)
>>> relab
array([5, 5, 6, 6, 7, 9, 8])
"""
offset = int(offset)
if offset <= 0:
raise ValueError("Offset must be strictly positive.")
if np.min(label_field) < 0:
raise ValueError("Cannot relabel array that contains negative values.")
max_label = int(label_field.max()) # Ensure max_label is an integer
if not np.issubdtype(label_field.dtype, np.integer):
new_type = np.min_scalar_type(max_label)
label_field = label_field.astype(new_type)
labels = np.unique(label_field)
labels0 = labels[labels != 0]
new_max_label = offset - 1 + len(labels0)
new_labels0 = np.arange(offset, new_max_label + 1)
output_type = label_field.dtype
required_type = np.min_scalar_type(new_max_label)
if np.dtype(required_type).itemsize > np.dtype(label_field.dtype).itemsize:
output_type = required_type
forward_map = np.zeros(max_label + 1, dtype=output_type)
forward_map[labels0] = new_labels0
inverse_map = np.zeros(new_max_label + 1, dtype=output_type)
inverse_map[offset:] = labels0
relabeled = forward_map[label_field]
return relabeled, forward_map, inverse_map
def group_matching_labels(ys, thresh=1e-10, criterion='iou'):
"""
Group matching objects (i.e. assign the same label id) in a
list of label images (e.g. consecutive frames of a time-lapse).
Uses function `matching` (with provided `criterion` and `thresh`) to
iteratively/greedily match and group objects/labels in consecutive images of `ys`.
To that end, matching objects are grouped together by assigning the same label id,
whereas unmatched objects are assigned a new label id.
At the end of this process, each label group will have been assigned a unique id.
Note that the label images `ys` will not be modified. Instead, they will initially
be duplicated and converted to data type `np.int32` before objects are grouped and the result
is returned. (Note that `np.int32` limits the number of label groups to at most 2147483647.)
Example
-------
import numpy as np
from stardist.data import test_image_nuclei_2d
from stardist.matching import group_matching_labels
_y = test_image_nuclei_2d(return_mask=True)[1]
labels = np.stack([_y, 2*np.roll(_y,10)], axis=0)
labels_new = group_matching_labels(labels)
Parameters
----------
ys : np.ndarray or list/tuple of np.ndarray
list/array of integer labels (2D or 3D)
"""
# check 'ys' without making a copy
len(ys) > 1 or _raise(ValueError("'ys' must have 2 or more entries"))
if isinstance(ys, np.ndarray):
_check_label_array(ys, 'ys')
ys.ndim > 1 or _raise(ValueError("'ys' must be at least 2-dimensional"))
ys_grouped = np.empty_like(ys, dtype=np.int32)
else:
all(_check_label_array(y, 'ys') for y in ys) or _raise(ValueError("'ys' must be a list of label images"))
all(y.shape==ys[0].shape for y in ys) or _raise(ValueError("all label images must have the same shape"))
ys_grouped = np.empty((len(ys),)+ys[0].shape, dtype=np.int32)
def _match_single(y_prev, y, next_id):
y = y.astype(np.int32, copy=False)
res = matching(y_prev, y, report_matches=True, thresh=thresh, criterion=criterion)
# relabel dict (for matching labels) that maps label ids from y -> y_prev
relabel = dict(reversed(res.matched_pairs[i]) for i in res.matched_tps)
y_grouped = np.zeros_like(y)
for r in regionprops(y):
m = (y[r.slice] == r.label)
if r.label in relabel:
y_grouped[r.slice][m] = relabel[r.label]
else:
y_grouped[r.slice][m] = next_id
next_id += 1
return y_grouped, next_id
ys_grouped[0] = ys[0]
next_id = ys_grouped[0].max() + 1
for i in range(len(ys)-1):
ys_grouped[i+1], next_id = _match_single(ys_grouped[i], ys[i+1], next_id)
return ys_grouped
def _shuffle_labels(y):
_check_label_array(y, 'y')
y2 = np.zeros_like(y)
ids = tuple(set(np.unique(y)) - {0})
relabel = dict(zip(ids,np.random.permutation(ids)))
for r in regionprops(y):
m = (y[r.slice] == r.label)
y2[r.slice][m] = relabel[r.label]
return y2