-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsample_patches.py
65 lines (46 loc) · 2.71 KB
/
sample_patches.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
"""provides a faster sampling function"""
import numpy as np
from csbdeep.utils import _raise, choice
def sample_patches(datas, patch_size, n_samples, valid_inds=None, verbose=False):
"""optimized version of csbdeep.data.sample_patches_from_multiple_stacks
"""
len(patch_size)==datas[0].ndim or _raise(ValueError())
if not all(( a.shape == datas[0].shape for a in datas )):
raise ValueError("all input shapes must be the same: %s" % (" / ".join(str(a.shape) for a in datas)))
if not all(( 0 < s <= d for s,d in zip(patch_size,datas[0].shape) )):
raise ValueError("patch_size %s negative or larger than data shape %s along some dimensions" % (str(patch_size), str(datas[0].shape)))
if valid_inds is None:
valid_inds = tuple(_s.ravel() for _s in np.meshgrid(*tuple(np.arange(p//2,s-p//2+1) for s,p in zip(datas[0].shape, patch_size))))
n_valid = len(valid_inds[0])
if n_valid == 0:
raise ValueError("no regions to sample from!")
idx = choice(range(n_valid), n_samples, replace=(n_valid < n_samples))
rand_inds = [v[idx] for v in valid_inds]
res = [np.stack([data[tuple(slice(_r-(_p//2),_r+_p-(_p//2)) for _r,_p in zip(r,patch_size))] for r in zip(*rand_inds)]) for data in datas]
return res
def get_valid_inds(img, patch_size, patch_filter=None):
"""
Returns all indices of an image that
- can be used as center points for sampling patches of a given patch_size, and
- are part of the boolean mask given by the function patch_filter (if provided)
img: np.ndarray
patch_size: tuple of ints
the width of patches per img dimension,
patch_filter: None or callable
a function with signature patch_filter(img, patch_size) returning a boolean mask
"""
len(patch_size)==img.ndim or _raise(ValueError())
if not all(( 0 < s <= d for s,d in zip(patch_size,img.shape))):
raise ValueError("patch_size %s negative or larger than image shape %s along some dimensions" % (str(patch_size), str(img.shape)))
if patch_filter is None:
# only cut border indices (which is faster)
patch_mask = np.ones(img.shape,dtype=bool)
valid_inds = tuple(np.arange(p // 2, s - p + p // 2 + 1).astype(np.uint32) for p, s in zip(patch_size, img.shape))
valid_inds = tuple(s.ravel() for s in np.meshgrid(*valid_inds, indexing='ij'))
else:
patch_mask = patch_filter(img, patch_size)
# get the valid indices
border_slices = tuple([slice(p // 2, s - p + p // 2 + 1) for p, s in zip(patch_size, img.shape)])
valid_inds = np.where(patch_mask[border_slices])
valid_inds = tuple((v + s.start).astype(np.uint32) for s, v in zip(border_slices, valid_inds))
return valid_inds