forked from smarsland/AviaNZ
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathWaveletFunctions.py
509 lines (438 loc) · 20.9 KB
/
WaveletFunctions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
# WaveletFunctions.py
# Class containing wavelet specific methods
# Version 3.0 14/09/20
# Authors: Stephen Marsland, Nirosha Priyadarshani, Julius Juodakis, Virginia Listanti
# AviaNZ bioacoustic analysis program
# Copyright (C) 2017--2020
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
import numpy as np
import math
import scipy.fftpack as fft
from scipy import signal
import pyfftw
from ext import ce_denoise as ce
import time
import Wavelet
import SignalProc
class WaveletFunctions:
""" This class contains the wavelet specific methods.
It is based on pywavelets (pywt), but has extra functions that are required
to work with the wavelet packet tree.
As far as possible it matches Matlab.
dmey2 is created from the Matlab dmeyer wavelet. It's the one to use.
Other wavelets are created from pywt.Wavelet filter banks.
Implements:
waveletDenoise
reconstructWPT
waveletLeafCoeffs
and helper functions:
ShannonEntropy
BestLevel
BestTree
ConvertWaveletNodeName
"""
def __init__(self,data,wavelet,maxLevel,samplerate):
""" Gets the data and makes the wavelet, loading dmey2 (an exact match to Matlab's dmey) from a file.
Stores some basic properties of the data (samplerate).
"""
if data is None:
print("ERROR: data must be provided")
return
if wavelet is None:
print("ERROR: wavelet must be provided")
return
self.data = data
self.maxLevel = maxLevel
self.tree = None
self.treefs = samplerate
self.wavelet = Wavelet.Wavelet(name=wavelet)
def ShannonEntropy(self,s):
""" Compute the Shannon entropy of data
"""
e = s[np.nonzero(s)]**2 * np.log(s[np.nonzero(s)]**2)
return np.sum(e)
def BestLevel(self,maxLevel=None):
""" Compute the best level for the wavelet packet decomposition by using the Shannon entropy.
Iteratively add a new depth of tree until either the maxLevel level is found, or the entropy drops.
"""
if maxLevel is None:
maxLevel = self.maxLevel
allnodes = range(2 ** (maxLevel + 1) - 1)
previouslevelmaxE = self.ShannonEntropy(self.data)
self.WaveletPacket(allnodes, 'symmetric', aaWP=False, antialiasFilter=True)
level = 1
currentlevelmaxE = np.max([self.ShannonEntropy(self.tree[n]) for n in range(1,3)])
while currentlevelmaxE < previouslevelmaxE and level<maxLevel:
previouslevelmaxE = currentlevelmaxE
level += 1
currentlevelmaxE = np.max([self.ShannonEntropy(self.tree[n]) for n in range(2**level-1, 2**(level+1)-1)])
return level
def BestTree(self,wp,threshold,costfn='threshold'):
""" Compute the best wavelet tree using one of three cost functions: threshold, entropy, or SURE.
Scores each node and uses those scores to identify new leaves of the tree by working up the tree.
Returns the list of new leaves of the tree.
"""
nnodes = 2 ** (wp.maxlevel + 1) - 1
cost = np.zeros(nnodes)
count = 0
for level in range(wp.maxlevel + 1):
for n in wp.get_level(level, 'natural'):
if costfn == 'threshold':
# Threshold
d = np.abs(n.data)
cost[count] = np.sum(d > threshold)
elif costfn == 'entropy':
# Entropy
d = n.data ** 2
cost[count] = -np.sum(np.where(d != 0, d * np.log(d), 0))
else:
# SURE
d = n.data ** 2
t2 = threshold * threshold
ds = np.sum(d > t2)
cost[count] = 2 * ds - len(n.data) + t2 * ds + np.sum(d * (d <= t2))
count += 1
# Compute the best tree using those cost values
flags = 2 * np.ones(nnodes)
flags[2 ** wp.maxlevel - 1:] = 1
# Work up the tree from just above leaves
inds = np.arange(2 ** wp.maxlevel - 1)
inds = inds[-1::-1]
for i in inds:
# Get children
children = (i + 1) * 2 + np.arange(2) - 1
c = cost[children[0]] + cost[children[1]]
if c < cost[i]:
cost[i] = c
flags[i] = 2
else:
flags[i] = flags[children[0]] + 2
flags[children] = -flags[children]
# Now get the new leaves of the tree. Anything below these nodes is deleted.
newleaves = np.where(flags > 2)[0]
# Make a list of the children of the newleaves, and recursively their children
def getchildren(n):
level = int(np.floor(np.log2(n + 1)))
if level < wp.maxlevel:
tbd.append((n + 1) * 2 - 1)
tbd.append((n + 1) * 2)
getchildren((n + 1) * 2 - 1)
getchildren((n + 1) * 2)
tbd = []
for i in newleaves:
getchildren(i)
tbd = np.unique(tbd)
# I wasn't happy that these were being deleted, so am going the other way round
listnodes = np.arange(2 ** (wp.maxlevel + 1) - 1)
listnodes = np.delete(listnodes, tbd)
notleaves = np.intersect1d(newleaves, tbd)
for i in notleaves:
newleaves = np.delete(newleaves, np.where(newleaves == i))
listleaves = np.intersect1d(np.arange(2 ** (wp.maxlevel) - 1, 2 ** (wp.maxlevel + 1) - 1), listnodes)
listleaves = np.unique(np.concatenate((listleaves, newleaves)))
return listleaves
def graycode(self, n):
""" Returns a MODIFIED Gray permutation of n -
which corresponds to the frequency band of position n.
Input and output are integer ranks indicating position within level."""
# convert number to binary repr string:
n = bin(n)[2:]
out = ''
# never flip first bit
toflip = False
while n!='':
# store leftmost bit or its complement to output
if toflip:
out = out + str(1-int(n[0]))
else:
out = out + n[0]
# strip leftmost bit
n = n[1:]
# if this bit was 1, flip next bit
if out[-1]=='1':
toflip = True
else:
toflip = False
return(int(out, 2))
# from memory_profiler import profile
# fp = open('memory_profiler_wp.log', 'w+')
# @profile(stream=fp)
def WaveletPacket(self, nodes, mode='symmetric', antialias=False, antialiasFilter=True):
""" Reimplementation of pywt.WaveletPacket, but allowing for antialias
following Strang & Nguyen (1996) or
An anti-aliasing algorithm for discrete wavelet transform. Jianguo Yang & S.T. Park (2003) or
An Anti-aliasing and De-noising Hybrid Algorithm for Wavelet Transform. Yuding Cui, Caihua Xiong, and Ronglei Sun (2013)
Data and wavelet are taken from current instance of WF. Therefore, ALWAYS use this together with WF, unless you're sure what you're doing.
Args:
1. nodes - list of integers, mandatory! will determine decomposition level from it
2. mode - symmetric by default, as in pywt.WaveletPacket
3. antialias - on/off switch
4. antialiasFilter - switches between using filters or fft zeroing
Return: none - sets self.tree.
"""
if len(self.data) > 910*16000 and antialias:
print("ERROR: processing files larger than 15 min in slow antialiasing mode is disabled. Enable this only if you are ready to wait.")
return
if len(nodes)==0 or not isinstance(nodes[0], int):
print("ERROR: must provide a list of integer node IDs")
return
# identify max decomposition level
maxlevel = math.floor(math.log2(max(nodes)+1))
if maxlevel>10:
print("ERROR: got level above 10, probably the nodes are specified badly")
return
# determine which nodes need to be produced (all parents of provided nodes)
nodes = list(nodes)
for child in nodes:
parent = (child - 1) // 2
if parent not in nodes and parent>=0:
nodes.append(parent)
nodes.sort()
# object with dec_lo, dec_hi, rec_lo, rec_hi properties. Can be pywt.Wavelet or WF.wavelet
wavelet = self.wavelet
# filter length for extension modes
flen = max(len(wavelet.dec_lo), len(wavelet.dec_hi), len(wavelet.rec_lo), len(wavelet.rec_hi))
# this tree will store non-downsampled coefs for reconstruction
self.tree = [self.data]
if mode != 'symmetric':
print("ERROR: only symmetric WP mode implemented so far")
return
# optional filtering instead of FFT squashing.
# see reconstructWP2 for more detailed explanation
# manually confirmed that this filter is stable hence no SOS option.
if antialiasFilter:
low = 0.5
hb,ha = signal.butter(20, low, btype='highpass')
lb,la = signal.butter(20, low, btype='lowpass')
# loop over possible parent nodes (so down to leaf level-1)
for node in range(2**maxlevel-1):
childa = node*2 + 1
childd = node*2 + 2
# if this node is irrelevant, just put empty children to
# keep tree order compatible with freq/filters
if childa not in nodes and childd not in nodes:
self.tree.append(np.array([]))
self.tree.append(np.array([]))
continue
# retrieve parent node from J level
data = self.tree[node]
# downsample all non-root nodes because that wasn't done
if node != 0:
data = data[0::2]
# symmetric mode
data = np.concatenate((data[0:flen:-1], data, data[-flen:]))
# zero-padding mode
# data = np.concatenate((np.zeros(8), tree[node], np.zeros(8)))
ll = len(data)
# make A_j+1 and D_j+1 (of length l)
if childa in nodes:
# fftconvolve seems slower and the caching results in high RAM usage
# nexta = signal.fftconvolve(data, wavelet.dec_lo, 'same')[1:-1]
nexta = np.convolve(data, wavelet.dec_lo, 'same')[1:-1]
# antialias A_j+1
if antialias:
if antialiasFilter:
nexta = signal.lfilter(lb, la, nexta)
else:
ft = pyfftw.interfaces.scipy_fftpack.fft(nexta)
ft[ll//4 : 3*ll//4] = 0
nexta = np.real(pyfftw.interfaces.scipy_fftpack.ifft(ft))
# store A before downsampling
self.tree.append(nexta)
# explicit garbage collection - it helps somehow:
del nexta
else:
self.tree.append(np.array([]))
if childd in nodes:
nextd = np.convolve(data, wavelet.dec_hi, 'same')[1:-1]
# antialias D_j+1
if antialias:
if antialiasFilter:
nextd = signal.lfilter(hb, ha, nextd)
else:
ft = pyfftw.interfaces.scipy_fftpack.fft(nextd)
ft[:ll//4] = 0
ft[3*ll//4:] = 0
nextd = np.real(pyfftw.interfaces.scipy_fftpack.ifft(ft))
# store D before downsampling
self.tree.append(nextd)
# explicit garbage collection - it helps somehow:
del nextd
else:
self.tree.append(np.array([]))
if antialias:
print("Node ", node, " complete.")
# Note: no return value, as it sets a tree on the WF object.
def getWCFreq(self, node, sampleRate):
""" Gets true frequencies of a wavelet node, based on sampling rate sampleRate."""
# find node's scale
lvl = math.floor(math.log2(node+1))
# position of node in its level (0-based)
nodepos = node - (2**lvl - 1)
# Gray-permute node positions (cause wp is not in natural order)
nodepos = self.graycode(nodepos)
# get number of nodes in this level
numnodes = 2**lvl
freqmin = nodepos*sampleRate/2/numnodes
freqmax = (nodepos+1)*sampleRate/2/numnodes
return((freqmin, freqmax))
def adjustNodes(self, nodes, change):
adjnodes = []
for node in nodes:
lvl = math.floor(math.log2(node+1))
numnodes = 2**lvl
nodepos = node - (2**lvl - 1)
# if you want the lower half subtree ("downsampling")
if change=="down2":
# remove nodes that are on the right side of the tree
# (the only case when numnodes is odd is lvl=0 and that needs to go as well)
if nodepos >= numnodes // 2:
continue
# else, renumber starting with a level lower
node = 2**(lvl-1) - 1 + nodepos
if node<0:
print("Warning: weird node produced, skipping:", node)
else:
adjnodes.append(node)
# if you want to change coords to one level higher ("upsampling")
elif change=="up2":
# renumber starting with a level higher
node = 2**(lvl+1) - 1 + nodepos
adjnodes.append(node)
else:
print("ERROR: unrecognised change", change)
return adjnodes
def reconstructWP2(self, node, antialias=False, antialiasFilter=False):
""" Inverse of WaveletPacket: returns the signal from a single node.
Expects our homebrew (non-downsampled) WP.
Takes Data and Wavelet from current WF instance.
Antialias option controls freq squashing in final step.
Return: the reconstructed signal, ndarray.
"""
wv = self.wavelet
data = self.tree[node]
sp = SignalProc.SignalProc()
lvl = math.floor(math.log2(node+1))
# position of node in its level (0-based)
nodepos = node - (2**lvl - 1)
# Gray-permute node positions (cause wp is not in natural order)
nodepos = self.graycode(nodepos)
# positive freq is split into bands 0:1/2^lvl, 1:2/2^lvl,...
# same for negative freq, so in total 2^lvl * 2 bands.
numnodes = 2**(lvl+1)
# do the actual convolutions + upsampling
if not isinstance(data, np.ndarray):
data = np.asarray(data, dtype='float64')
data = ce.reconstruct(data, node, np.array(wv.rec_hi), np.array(wv.rec_lo), lvl)
if antialias:
if len(data) > 910*16000 and not antialiasFilter:
print("Size of signal to be reconstructed is", len(data))
print("ERROR: processing of big data chunks is currently disabled. Recommend splitting files to below 15 min chunks. Enable this only if you know what you're doing.")
return
if antialiasFilter:
# BETTER METHOD for antialiasing
# essentially same as SignalProc.ButterworthBandpass,
# just stripped to minimum for speed.
low = nodepos / numnodes*2
high = (nodepos+1) / numnodes*2
print("antialiasing by filtering between %.3f-%.3f FN" %(low, high))
data = sp.FastButterworthBandpass(data, low, high)
else:
# OLD METHOD for antialiasing
# just setting image frequencies to 0
print("antialiasing via FFT")
ft = pyfftw.interfaces.scipy_fftpack.fft(data)
ll = len(ft)
# to keep: [nodepos/numnodes : (nodepos+1)/numnodes] x Fs
# (same for negative freqs)
ft[ : ll*nodepos//numnodes] = 0
ft[ll*(nodepos+1)//numnodes : -ll*(nodepos+1)//numnodes] = 0
# indexing [-0:] wipes everything
if nodepos!=0:
ft[-ll*nodepos//numnodes : ] = 0
data = np.real(pyfftw.interfaces.scipy_fftpack.ifft(ft))
return data
def waveletDenoise(self,thresholdType='soft',threshold=4.5,maxLevel=5,bandpass=False, costfn='threshold', aaRec=False, aaWP=False, thrfun="c"):
""" Perform wavelet denoising.
Constructs the wavelet tree to max depth (either specified or found), constructs the best tree, and then
thresholds the coefficients (soft or hard thresholding), reconstructs the data and returns the data at the root.
Data and wavelet are taken from WF object's self.
Args:
1. threshold type ('soft'/'hard')
2-5. obvious parameters
6. antialias while reconstructing (T/F)
7. antialias while building the WP ('full'), (T/F)
Return: reconstructed signal (ndarray)
"""
print("Wavelet Denoising-Modified requested, with the following parameters: type %s, threshold %f, maxLevel %d, bandpass %s, costfn %s" % (thresholdType, threshold, maxLevel, bandpass, costfn))
opstartingtime = time.time()
if maxLevel == 0:
self.maxLevel = self.BestLevel()
print("Best level is %d" % self.maxLevel)
else:
self.maxLevel = maxLevel
self.thresholdMultiplier = threshold
# Create wavelet decomposition. Note: using full AA here
allnodes = range(2 ** (self.maxLevel + 1) - 1)
self.WaveletPacket(allnodes, 'symmetric', aaWP, antialiasFilter=True)
print("Checkpoint 1, %.5f" % (time.time() - opstartingtime))
# Get the threshold
det1 = self.tree[2]
# Note magic conversion number
sigma = np.median(np.abs(det1)) / 0.6745
threshold = self.thresholdMultiplier * sigma
print("Checkpoint 2, %.5f" % (time.time() - opstartingtime))
# NOTE: node order is not the same
# NOTE: threshold isn't needed for Entropy cost fn
bestleaves = ce.BestTree2(self.tree,threshold,costfn)
print("leaves to keep:", bestleaves)
# Make a new tree with these in
# pywavelet makes the whole tree. So if you don't give it blanks from places where you don't want the values in
# the original tree, it copies the details from wp even though it wasn't asked for them.
# Reconstruction with the zeros is different to not reconstructing.
# Copy thresholded versions of the leaves into the new wpt
# NOTE: this version overwrites the provided wp
if thrfun == "c":
# constant threshold across all levels, nodes and times
exit_code = ce.ThresholdNodes2(self, self.tree, bestleaves, threshold, thresholdType)
elif thrfun == "l":
# threshold level-specific, constant across nodes and times
exit_code = ce.ThresholdNodes2(self, self.tree, bestleaves, threshold, thresholdType)
# TODO
elif thrfun == "n":
# threshold node-specific, constant across times
# Get the threshold
threshold = np.zeros(len(bestleaves))
bestleaves_sort = list(set(bestleaves))
# NOTE: IMPORTANT: bestleaves must be in set-order!!
for leavenum in range(len(bestleaves_sort)):
node = bestleaves_sort[leavenum]
det1 = self.tree[node]
# Note magic conversion number
sigma = np.median(np.abs(det1)) / 0.6745
threshold[leavenum] = self.thresholdMultiplier * sigma
exit_code = ce.ThresholdNodes2(self, self.tree, bestleaves, threshold, thresholdType)
else:
print("ERROR: unknown threshold type ", thrfun)
return
if exit_code != 0:
print("ERROR: ThresholdNodes2 exited with exit code ", exit_code)
return
# Reconstruct the internal nodes and the data
print("Checkpoint 3, %.5f" % (time.time() - opstartingtime))
data = self.tree[0]
new_wp = np.zeros(len(data))
for i in bestleaves:
tmp = self.reconstructWP2(i, aaRec, True)[0:len(data)]
new_wp = new_wp + tmp
print("Checkpoint 4, %.5f" % (time.time() - opstartingtime))
return new_wp