forked from smarsland/AviaNZ
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathClustering.py
1097 lines (962 loc) · 52.3 KB
/
Clustering.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Clustering.py
#
# Cluster segments
# Version 3.0 14/09/20
# Authors: Stephen Marsland, Nirosha Priyadarshani, Julius Juodakis, Virginia Listanti
# AviaNZ bioacoustic analysis program
# Copyright (C) 2017--2020
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
import numpy as np
import random
import os, wavio
import librosa
import WaveletSegment
import WaveletFunctions
import SignalProc
import Segment
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import scale
from sklearn.mixture import GaussianMixture
from sklearn.decomposition import PCA
from sklearn.cluster import KMeans
from sklearn.cluster import MiniBatchKMeans
from sklearn.cluster import DBSCAN
from sklearn.cluster import Birch
from sklearn.cluster import SpectralClustering
from sklearn.cluster import MeanShift
from sklearn.cluster import AgglomerativeClustering
from sklearn.cluster import AffinityPropagation
# from sklearn.cluster import OPTICS
# from sklearn import cluster_optics_dbscan
from sklearn import metrics
from sklearn.manifold import TSNE
from statistics import mode
from sklearn.metrics.pairwise import pairwise_distances
class Clustering:
# This class implements various clustering algorithms and performance measures for the AviaNZ interface
# Based on scikit-learn
def __init__(self, features, labels, nclusters):
if not features == []:
features = StandardScaler().fit_transform(features)
self.features = features
self.targets = labels
self.n_clusters = nclusters
def custom_dist(self, x, y):
d, _ = librosa.sequence.dtw(x, y, metric='euclidean')
return d[d.shape[0] - 1][d.shape[1] - 1]
def clusteringScore1(self, labels_true, labels):
""" Evaluate clustering performance using different scores when ground truth labels are present.
"""
arc = self.adjustedRandScore(labels_true, labels)
ami = self.adjustedMutualInfo(labels_true, labels)
h = self.homogeneityScore(labels_true, labels)
c = self.completenessScore(labels_true, labels)
v = self.vMeasureScore(labels_true, labels)
return arc, ami, h, c, v
def clusteringScore2(self, features, labels):
""" Evaluate clustering performance using different scores when ground truth labels are NOT present.
"""
sc = self.silhouetteCoef(features, labels)
return sc
def homogeneityScore(self, labels_true, labels):
""" Homogeneity: each cluster contains only members of a single class.
score - between 0.0 and 1.0.
1.0 perfectly homogeneous
"""
hs = metrics.homogeneity_score(labels_true, labels)
print("Homogeneity: %0.3f" % hs)
return hs
def completenessScore(self, labels_true, labels):
""" Completeness: all members of a given class are assigned to the same cluster.
score - between 0.0 and 1.0.
1.0 perfectly complete
"""
cs = metrics.completeness_score(labels_true, labels)
print("Completeness: %0.3f" % cs)
return cs
def vMeasureScore(self, labels_true, labels):
""" V-measure is the harmonic mean between homogeneity and completeness.
score - between 0.0 and 1.0.
1.0 perfectly complete labeling
"""
vs = metrics.v_measure_score(labels_true, labels)
print("V-measure: %0.3f" % vs)
return vs
def adjustedRandScore(self, labels_true, labels):
""" Measures the similarity of the two assignments, ignoring permutations and with chance normalization.
score - between -1.0 and 1.0.
Random labelings will have score close to 0.0.
1.0 perfect match.
"""
ari = metrics.adjusted_rand_score(labels_true, labels)
print("Adjusted Rand Index: %0.3f" % ari)
return ari
def adjustedMutualInfo(self, labels_true, labels):
""" Adjusted Mutual Information between two clusterings. Measures the agreement of the two assignments,
ignoring permutations.
score - =< 1.0.
1.0 perfect match.
"""
ami = metrics.adjusted_mutual_info_score(labels_true, labels)
print("Adjusted Mutual Information: %0.3f" % ami)
return ami
def silhouetteCoef(self, features, labels):
""" When the ground truth labels are not present.
Mean Silhouette Coefficient of all samples.
Calculated using the mean intra-cluster distance and the mean nearest-cluster distance for each
sample.
score - between -1.0 and 1.0 (perfect).
score close to zero: overlapping clusters.
negative score: a sample has been assigned to the wrong cluster, as a different cluster is more similar.
"""
sc = metrics.silhouette_score(features, labels)
print("Silhouette Coefficient: %0.3f" % sc)
return sc
def kMeans(self, init='k-means++', n_clusters=8, n_init=10):
""" K-Means clustering.
Useful when: general-purpose, even cluster size, flat geometry, not too many clusters.
"""
model = KMeans(init=init, n_clusters=n_clusters, n_init=n_init)
model.fit(self.features)
return model
def miniBatchKmeans(self, n_clusters=8, init='k-means++', max_iter=100, batch_size=25):
""" Variant of the K-Means algorithm, uses mini-batches to reduce the computation time.
"""
model = MiniBatchKMeans(n_clusters=n_clusters, init=init, max_iter=max_iter, batch_size=batch_size)
model.fit(self.features)
return model
def meanShift(self):
""" A sliding-window-based algorithm that attempts to find dense areas of data points.
Usecase: many clusters, uneven cluster size, non-flat geometry.
"""
model = MeanShift()
model.fit(self.features)
return model
# def DBscan(self, eps=0.5, min_samples=5, metric='euclidean'):
def DBscan(self, eps=0.5, min_samples=5):
""" Density-Based Spatial Clustering of Applications with Noise. An extension to mean shift clustering.
Finds core samples of high density and expands clusters from them.
Usecase: non-flat geometry, uneven cluster sizes
"""
# model = DBSCAN(eps=eps, min_samples=min_samples, metric=metric)
# model = DBSCAN(eps=eps, min_samples=min_samples, metric=self.custom_dist)
model = DBSCAN(metric='precomputed')
d = pairwise_distances(self.features, self.features, metric=self.custom_dist)
# model.fit(self.features)
model.fit(d)
return model
def birch(self, threshold=0.5, branching_factor=50, n_clusters=3, compute_labels=True, copy=True):
""" Builds a tree called the Characteristic Feature Tree (CFT) for the given data. The data is essentially lossy
compressed to a set of Characteristic Feature nodes (CF Nodes).
Usecase: large dataset, outlier removal, data reduction
"""
model = Birch(threshold=threshold, branching_factor=branching_factor, n_clusters=n_clusters,
compute_labels=compute_labels, copy=copy)
model.fit(self.features)
return model
def spectralClustering(self, n_clusters=8, eigen_solver=None, random_state=None, n_init=10, gamma=1.0,
affinity='rbf', n_neighbors=10, eigen_tol=0.0, assign_labels='kmeans', degree=3,
coef0=1, kernel_params=None, n_jobs=None):
""" Requires the number of clusters to be specified. Good for small number of classes.
Usecase: few clusters, even cluster size, non-flat geometry.
"""
model = SpectralClustering(n_clusters=n_clusters, eigen_solver=eigen_solver, random_state=random_state,
n_init=n_init, gamma=gamma, affinity=affinity, n_neighbors=n_neighbors,
eigen_tol=eigen_tol, assign_labels=assign_labels, degree=degree, coef0=coef0,
kernel_params=kernel_params, n_jobs=n_jobs)
model.fit(self.features)
return model
def agglomerativeClustering(self, n_clusters=3, distance_threshold=None, linkage='ward', affinity='euclidean',
compute_full_tree=False):
""" A Hierarchical clustering using a bottom up approach: each observation starts in its own cluster, and
clusters are successively merged together.
Usecase: many clusters, possibly connectivity constraints, non Euclidean distances.
"""
model = AgglomerativeClustering(n_clusters=n_clusters, distance_threshold=distance_threshold, linkage=linkage,
affinity=affinity, compute_full_tree=compute_full_tree)
d = pairwise_distances(self.features, self.features, metric=self.custom_dist)
model.fit(d)
# model.fit(self.features)
return model
def GMM(self, n_components=3, covariance_type='full', tol=0.001, reg_covar=1e-06, max_iter=100, n_init=1,
init_params='kmeans'):
""" Gaussian mixture model. Not scalable.
Usecase: flat geometry, good for density estimation.
"""
model = GaussianMixture(n_components=n_components, covariance_type=covariance_type, tol=tol,
reg_covar=reg_covar, max_iter=max_iter, n_init=n_init, init_params=init_params)
model.fit(self.features)
model.labels_ = model.predict(self.features)
return model
def affinityPropagation(self, damping=0.5, max_iter=200, convergence_iter=15):
""" Affinity Propagation.
Usecase: many clusters, uneven cluster size, non-flat geometry.
"""
model = AffinityPropagation(damping=damping, max_iter=max_iter, convergence_iter=convergence_iter)
model.fit(self.features)
return model
def som(self, mapsize):
""" Self Organising Map
"""
import sompy
som = sompy.SOMFactory.build(self.features, [], mask=None, mapshape='planar', lattice='rect', normalization='var',
initialization='pca', neighborhood='gaussian', training='batch', name='sompy')
som.train()
return som
# def cluster(self, dirname, fs, species=None, feature='we', n_mels=24, minlen=0.2, denoise=False, alg='agglomerative'):
def cluster(self, dirname, fs, species=None, feature='we', n_mels=24, minlen=0.2, denoise=False,
alg='agglomerative'):
"""
Cluster segments during training to make sub-filters.
Given wav + annotation files,
1) identify syllables using median clipping/ FIR
2) make them to fixed-length by padding or clipping
3) use existing clustering algorithems
:param dir: path to directory with wav & wav.data files
:param fs: sample rate
:param species: string, optional. will train on segments containing this label
:param feature: 'we' (wavelet energy), 'mfcc', or 'chroma'
:param n_mels: number of mel coeff when feature='mfcc'
:param minlen: min syllable length in secs
:param denoise: True/False
:param alg: algorithm to use, default to agglomerative
:return: clustered segments - a list of lists [[file1, seg1, [syl1, syl2], [features1, features2], predict], ...]
fs, nclasses, syllable duration (median)
"""
self.alg = alg
nlevels = 6
weInds = []
# 1. Get the frequency band and sampling frequency from annotations
f1, f2 = self.getFrqRange(dirname, species, fs)
print("Clustering using sampling rate", fs)
# 2. Find the lower and upper bounds (relevant to the frq range)
if feature == 'mfcc' and f1 != 0 and f2 != 0:
mels = librosa.core.mel_frequencies(n_mels=n_mels, fmin=0.0, fmax=fs / 2, htk=False)
ind_flow = (np.abs(mels - f1)).argmin()
ind_fhigh = (np.abs(mels - f2)).argmin()
elif feature == 'we' and f1 != 0 and f2 != 0:
weInds = self.nodesInRange(nlevels, f1, f2, fs)
# 3. Clustering at syllable level, therefore find the syllables in each segment
dataset = self.findSyllables(dirname, species, minlen, fs, f1, f2, denoise)
# dataset format: [[file1, seg1, syl1], [file1, seg1, syl2], [file1, seg2, syl1],..]
# Make syllables fixed-length (again to have same sized feature matrices) and generate features
lengths = []
for data in dataset:
lengths.append(data[2][1] - data[2][0])
duration = np.median(lengths)
print("- Setting duration to", duration)
# duration is going to be the fixed length of a syllable, if a syllable too long clip it
for record in dataset:
if record[2][1] - record[2][0] > duration:
middle = (record[2][1] + record[2][0]) / 2
record[2][0] = middle - duration / 2
record[2][1] = middle + duration / 2
# 4. Read the syllables and generate features, also zero padding short syllables
features = []
for record in dataset:
audiodata = self.loadFile(filename=record[0], duration=record[2][1] - record[2][0], offset=record[2][0], fs=fs, denoise=denoise, f1=f1, f2=f2, silent=True)
audiodata = audiodata.tolist()
if record[2][1] - record[2][0] < duration:
# Zero padding both ends to have fixed duration
gap = int((duration * fs - len(audiodata)) // 2)
z = [0] * gap
audiodata.extend(z)
z.extend(audiodata)
audiodata = z
if feature == 'mfcc': # MFCC
mfcc = librosa.feature.mfcc(y=np.asarray(audiodata), sr=fs, n_mfcc=n_mels)
if f1 != 0 and f2 != 0:
mfcc = mfcc[ind_flow:ind_fhigh, :] # Limit the frequency to the fixed range [f1, f2]
mfcc_delta = librosa.feature.delta(mfcc, mode='nearest')
mfcc = np.concatenate((mfcc, mfcc_delta), axis=0)
mfcc = scale(mfcc, axis=1)
mfcc = [i for sublist in mfcc for i in sublist]
features.append(mfcc)
record.insert(3, mfcc)
elif feature == 'we': # Wavelet Energy
ws = WaveletSegment.WaveletSegment(spInfo={})
we = ws.computeWaveletEnergy(data=audiodata, sampleRate=fs, nlevels=nlevels, wpmode='new')
we = we.mean(axis=1)
if weInds:
we = we[weInds]
# if f1 != 0 and f2 != 0:
# we = we[ind_flow:ind_fhigh] # Limit the frequency to a fixed range f1, f2
features.append(we)
record.insert(3, we)
elif feature == 'chroma':
chroma = librosa.feature.chroma_cqt(y=audiodata, sr=fs)
# chroma = librosa.feature.chroma_stft(y=data, sr=fs)
chroma = scale(chroma, axis=1)
features.append(chroma)
record.insert(3, chroma)
# 5. Actual clustering
# features = TSNE().fit_transform(features)
self.features = features
model = self.trainModel()
predicted_labels = model.labels_
print(predicted_labels)
# clusters = len(set(model.labels_))
# Attach the label to each syllable
for i in range(len(predicted_labels)):
dataset[i].insert(4, predicted_labels[i]) # dataset format [[file1, seg1, syl1, features, predict], ...]
clustered_dataset = []
for record in dataset:
if record[:2] not in clustered_dataset:
clustered_dataset.append(record[:2]) # clustered_dataset [[file1, seg1], ...]
labels = [[] for i in range(len(clustered_dataset))]
for i in range(len(predicted_labels)):
ind = clustered_dataset.index(dataset[i][:2])
labels[ind].append(predicted_labels[i])
# Majority voting when multiple syllables in a segment
for i in range(len(labels)):
try:
labels[i] = mode(labels[i])
except:
labels[i] = labels[i][0]
# Add the detected syllables
for record in clustered_dataset:
record.insert(2, [])
for rec in dataset:
if record[:2] == rec[:2]:
record[2].append(rec[2])
# Add the features
for record in clustered_dataset:
record.insert(3, [])
for rec in dataset:
if record[:2] == rec[:2]:
record[3].append(rec[3])
# Make the labels continous, e.g. agglomerative may have produced 0, 2, 3, ...
ulabels = list(set(labels))
nclasses = len(ulabels)
dic = []
for i in range(nclasses):
dic.append((ulabels[i], i))
dic = dict(dic)
# Update the labels
for i in range(len(clustered_dataset)):
clustered_dataset[i].insert(4, dic[labels[i]])
# clustered_dataset format: [[file1, seg1, [syl1, syl2], [features1, features2], predict], ...]
return clustered_dataset, nclasses, duration
def nodesInRange(self, nlevels, f1, f2, fs):
''' Return the indices (nodes) to keep
'''
allnodes = range(1, 2 ** (nlevels + 1) - 1)
inband = []
for i in allnodes:
flow, fhigh = WaveletFunctions.getWCFreq(i, fs)
if flow < f2 and fhigh > f1:
inband.append(i-1)
return inband
def getFrqRange(self, dirname, species, fs):
''' Get the frequency band and sampling frequency from annotations
'''
lowlist = []
highlist = []
# Directory mode (from the training dialog)
if os.path.isdir(dirname):
for root, dirs, files in os.walk(str(dirname)):
for file in files:
if file.lower().endswith('.wav') and file + '.data' in files:
# wavrate = wavio.readFmt(os.path.join(root, file))[0]
# srlist.append(wavrate)
# Read the annotation
segments = Segment.SegmentList()
segments.parseJSON(os.path.join(root, file + '.data'))
# keep the right species
if species:
thisSpSegs = segments.getSpecies(species)
else:
thisSpSegs = np.arange(len(segments)).tolist()
for segix in thisSpSegs:
seg = segments[segix]
lowlist.append(seg[2])
highlist.append(seg[3])
# File mode (from the main interface)
elif os.path.isfile(dirname):
if dirname.lower().endswith('.wav') and os.path.exists(dirname + '.data'):
# wavrate = wavio.readFmt(dirname)[0]
# srlist.append(wavrate)
# Read the annotation
segments = Segment.SegmentList()
segments.parseJSON(dirname + '.data')
# keep the right species
if species:
thisSpSegs = segments.getSpecies(species)
else:
thisSpSegs = np.arange(len(segments)).tolist()
for segix in thisSpSegs:
seg = segments[segix]
lowlist.append(seg[2])
highlist.append(seg[3])
if len(thisSpSegs) < self.n_clusters:
self.n_clusters = len(thisSpSegs)//2
print('Setting number of clusters to ', self.n_clusters)
# Sampling rate is coming from the first page in the wavelet training wizard
# # Set sampling frequency based on segments and min samp. frq from the file list
# arr = [4000, 8000, 16000, 32000, 48000]
# pos = np.abs(arr - np.median(highlist) * 2).argmin()
# fs = arr[pos]
# if fs > np.min(srlist):
# fs = np.min(srlist)
# Find frequency limits
# TODO: Made fixed in order to have same sized feature matrices, can we vary this to use segment frequency limits?
if len(lowlist) > 0:
f1 = np.min(lowlist)
f2 = np.median(highlist)
else:
f1 = 0
f2 = fs/2
if fs < f2 * 2 + 50:
f2 = fs // 2 - 50
if f2 < f1:
f2 = np.mean(highlist)
return f1, f2
def findSyllables(self, dirname, species, minlen, fs, f1, f2, denoise):
""" Find the syllables
:param dirname: directory with the sound and annotation files OR a single wave file (having its .data)
:param species: target species
:param minlen: minimum length of a segment
:param fs: sampling frequency
:param f1: lower frequency bound
:param f2: higher frequency bound
:param denoise: denoise or not binary
:return: a list of lists [[file1, seg1, syl1], [file1, seg1, syl2], [file1, seg2, syl1],..]
"""
dataset = []
if os.path.isdir(dirname):
for root, dirs, files in os.walk(str(dirname)):
for file in files:
if file.lower().endswith('.wav') and file + '.data' in files:
# Read the annotation
segments = Segment.SegmentList()
segments.parseJSON(os.path.join(root, file + '.data'))
if species:
thisSpSegs = segments.getSpecies(species)
else:
thisSpSegs = np.arange(len(segments)).tolist()
# Now find syllables within each segment, median clipping
for segix in thisSpSegs:
seg = segments[segix]
syls = self.findSyllablesSeg(os.path.join(root, file), seg, fs, denoise, minlen)
for syl in syls:
dataset.append([os.path.join(root, file), seg, syl])
elif os.path.isfile(dirname):
if dirname.lower().endswith('.wav') and os.path.exists(dirname + '.data'):
# Read the annotation
segments = Segment.SegmentList()
segments.parseJSON(dirname + '.data')
if species:
thisSpSegs = segments.getSpecies(species)
else:
thisSpSegs = np.arange(len(segments)).tolist()
# Now find syllables within each segment, median clipping
for segix in thisSpSegs:
seg = segments[segix]
syls = self.findSyllablesSeg(dirname, seg, fs, denoise, minlen)
for syl in syls:
dataset.append([dirname, seg, syl])
return dataset
def findSyllablesSeg(self, file, seg, fs, denoise, minlen):
""" Find syllables in the segment using median clipping - single segment
:return: syllables list
"""
# TODO: Use f1 and f2 to restrict spectrogram in median clipping to skip some of the noise
# audiodata = self.loadFile(filename=file, duration=seg[1] - seg[0], offset=seg[0], fs=fs, denoise=denoise, f1=f1, f2=f2)
audiodata = self.loadFile(filename=file, duration=seg[1] - seg[0], offset=seg[0], fs=fs, denoise=denoise)
start = seg[0]
sp = SignalProc.SignalProc()
sp.data = audiodata
sp.sampleRate = fs
_ = sp.spectrogram()
# Show only the segment frequencies to the median clipping and avoid overlapping noise - better than filtering when loading audiodata (it could make aliasing effect)
linear = np.linspace(0, fs / 2, int(sp.window_width/2))
# check segment type to determine if upper freq bound is OK
if seg[3]==0:
print("Warning: auto-detecting freq bound for full-height segments")
fhigh = fs//2
else:
fhigh = seg[3]
ind_flow = (np.abs(linear - seg[2])).argmin()
ind_fhigh = (np.abs(linear - fhigh)).argmin()
sp.sg = sp.sg[:, ind_flow:ind_fhigh]
segment = Segment.Segmenter(sp, fs)
syls = segment.medianClip(thr=3, medfiltersize=5, minaxislength=9, minSegment=50)
if len(syls) == 0: # Sanity check
# Try again with lower threshold
segment = Segment.Segmenter(sp, fs)
syls = segment.medianClip(thr=2, medfiltersize=5, minaxislength=9, minSegment=50)
# Merge overlapped segments
syls = segment.checkSegmentOverlap(syls)
syls = segment.deleteShort(syls, minlen)
syls = [[s[0] + start, s[1] + start] for s in syls]
# Sanity check, e.g. when user annotates syllables tight, median clipping may not detect it
if len(syls) == 0:
syls = [[start, seg[1]]]
if len(syls) == 1 and syls[0][1] - syls[0][0] < minlen: # Sanity check
syls = [[start, seg[1]]]
return syls
def trainModel(self):
""" Clustering model"""
if self.alg == 'DBSCAN':
print('\nDBSCAN--------------------------------------')
model = self.DBscan(eps=0.3, min_samples=3)
elif self.alg == 'Birch':
print('\nBirch----------------------------------------')
if not self.n_clusters:
model = self.birch(threshold=0.5, n_clusters=self.n_clusters)
else:
model = self.birch(threshold=0.88, n_clusters=None)
if self.alg == 'agglomerative':
print('\nAgglomerative Clustering----------------------')
# Either set n_clusters=None and compute_full_tree=T or distance_threshold=None
if not self.n_clusters:
model = self.agglomerativeClustering(n_clusters=None, distance_threshold=0.5, linkage='average', affinity='precomputed')
else:
model = self.agglomerativeClustering(n_clusters=self.n_clusters, distance_threshold=None, linkage='average', affinity='precomputed')
# # Either set n_clusters=None and compute_full_tree=T or distance_threshold=None
# if not self.n_clusters:
# model = self.agglomerativeClustering(n_clusters=None, compute_full_tree=True, distance_threshold=0.5,
# linkage='complete')
# else:
# model = self.agglomerativeClustering(n_clusters=self.n_clusters, compute_full_tree=False,
# distance_threshold=None, linkage='complete')
# # model.fit_predict(self.features)
return model
def getClusterCenter(self, cluster, fs, f1, f2, feature, duration, n_mels=24, denoise=False):
"""
Compute cluster centre of a cluster
:param cluster: segments of a cluster - a list of lists, each sublist represents a segment
[parent_audio_file, [segment], [syllables], [features], class_label]
:param feature: 'we' or 'mfcc' or 'chroma'
:param duration: the fixed duration of a syllable
:return: cluster centre, an array
"""
# Re-compute features to match with frquency range [f1, f2]
# Find the lower and upper bounds (relevant to the frq range), when the range is given
if feature == 'mfcc' and f1 != 0 and f2 != 0:
mels = librosa.core.mel_frequencies(n_mels=n_mels, fmin=0.0, fmax=fs / 2, htk=False)
ind_flow = (np.abs(mels - f1)).argmin()
ind_fhigh = (np.abs(mels - f2)).argmin()
elif feature == 'we' and f1 != 0 and f2 != 0:
linear = np.linspace(0, fs / 2, 62)
ind_flow = (np.abs(linear - f1)).argmin()
ind_fhigh = (np.abs(linear - f2)).argmin()
fc = []
for record in cluster:
# Compute the features of each syllable in this segment
for syl in record[2]:
audiodata = self.loadFile(filename=record[0], duration=syl[1] - syl[0], offset=syl[0], fs=fs, denoise=denoise, f1=f1, f2=f2, silent=True)
audiodata = audiodata.tolist()
if syl[1] - syl[0] < duration:
# Zero padding both ends to have fixed duration
gap = int((duration * fs - len(audiodata)) // 2)
z = [0] * gap
audiodata.extend(z)
z.extend(audiodata)
audiodata = z
if feature == 'mfcc': # MFCC
mfcc = librosa.feature.mfcc(y=np.asarray(audiodata), sr=fs, n_mfcc=n_mels)
if f1 != 0 and f2 != 0:
mfcc = mfcc[ind_flow:ind_fhigh, :] # Limit the frequency to the fixed range [f1, f2]
mfcc_delta = librosa.feature.delta(mfcc, mode='nearest')
mfcc = np.concatenate((mfcc, mfcc_delta), axis=0)
mfcc = scale(mfcc, axis=1)
mfcc = [i for sublist in mfcc for i in sublist]
fc.append(mfcc)
elif feature == 'we': # Wavelet Energy
ws = WaveletSegment.WaveletSegment(spInfo={})
we = ws.computeWaveletEnergy(data=audiodata, sampleRate=fs, nlevels=5, wpmode='new')
we = we.mean(axis=1)
if f1 != 0 and f2 != 0:
we = we[ind_flow:ind_fhigh] # Limit the frequency to a fixed range f1, f2
fc.append(we)
elif feature == 'chroma':
chroma = librosa.feature.chroma_cqt(y=audiodata, sr=fs)
# chroma = librosa.feature.chroma_stft(y=data, sr=fs)
chroma = scale(chroma, axis=1)
fc.append(chroma)
return np.mean(fc, axis=0)
def loadFile(self, filename, duration=0, offset=0, fs=0, denoise=False, f1=0, f2=0, silent=False):
"""
Read audio file and preprocess as required.
"""
if duration == 0:
duration = None
sp = SignalProc.SignalProc(256, 128)
sp.readWav(filename, duration, offset, silent=silent)
sp.resample(fs)
sampleRate = sp.sampleRate
audiodata = sp.data
# # pre-process
if denoise:
WF = WaveletFunctions.WaveletFunctions(data=audiodata, wavelet='dmey2', maxLevel=10, samplerate=fs)
audiodata = WF.waveletDenoise(thresholdType='soft', maxLevel=10)
if f1 != 0 and f2 != 0:
# audiodata = sp.ButterworthBandpass(audiodata, sampleRate, f1, f2)
audiodata = sp.bandpassFilter(audiodata, sampleRate, f1, f2)
return audiodata
def cluster_by_dist(self, dir, species, feature='we', n_mels=24, fs=0, minlen=0.2, f_1=0, f_2=0, denoise=False, single=False,
distance='dtw', max_clusters=10):
"""
Given wav + annotation files,
1) identify syllables using median clipping/ FIR
2) generate features WE/MFCC/chroma
3) calculate DTW distances and decide class/ generate new class
:param dir: directory of audio and annotations
:param feature: 'WE' or 'MFCC' or 'chroma'
:param n_mels: number of mel coefs for MFCC
:param fs: prefered sampling frequency, 0 leads to calculate it from the anotations
:param minlen: min syllable length in secs
:param f_1: lower frequency bound, 0 leads to calculate it from the anotations
:param f_2: upper frequency bound, 0 leads to calculate it from the anotations
:param denoise: wavelet denoise
:param single: True means when there are multiple syllables in a segment, add only one syllable to the cluster info
:param distance: 'dtw' or 'xcor'
:return: possible clusters
"""
import Segment
import SignalProc
from scipy import signal
# Get flow and fhigh for bandpass from annotations
lowlist = []
highlist = []
srlist = []
for root, dirs, files in os.walk(str(dir)):
for file in files:
if file.lower().endswith('.wav') and file + '.data' in files:
wavrate = wavio.readFmt(os.path.join(root, file))[0]
srlist.append(wavrate)
# Read the annotation
segments = Segment.SegmentList()
segments.parseJSON(os.path.join(root, file + '.data'))
# keep the right species
if species:
thisSpSegs = segments.getSpecies(species)
else:
thisSpSegs = np.arange(len(segments)).tolist()
for segix in thisSpSegs:
seg = segments[segix]
lowlist.append(seg[2])
highlist.append(seg[3])
print(lowlist)
print(highlist)
print(srlist)
if f_1 == 0:
f_1 = np.min(lowlist)
if f_2 == 0:
f_2 = np.median(highlist)
if fs == 0:
arr = [4000, 8000, 16000]
pos = np.abs(arr - np.median(highlist) * 2).argmin()
fs = arr[pos]
print('fs: ', fs)
if fs > np.min(srlist):
print(fs)
fs = np.min(srlist)
if fs < f_2 * 2 + 50:
f_2 = fs // 2 - 50
minlen_samples = minlen * fs
print('Frequency band:', f_1, '-', f_2)
print('fs: ', fs)
# Find the lower and upper bounds (relevant to the frq range), when the range is given
if feature == 'mfcc' and f_1 != 0 and f_2 != 0:
mels = librosa.core.mel_frequencies(n_mels=n_mels, fmin=0.0, fmax=fs / 2, htk=False)
ind_flow = (np.abs(mels - f_1)).argmin()
ind_fhigh = (np.abs(mels - f_2)).argmin()
elif feature == 'we' and f_1 != 0 and f_2 != 0:
linear = np.linspace(0, fs / 2, 62)
ind_flow = (np.abs(linear - f_1)).argmin()
ind_fhigh = (np.abs(linear - f_2)).argmin()
# Ready for clustering
max_clusters = max_clusters
n_clusters = 0
clusters = []
for root, dirs, files in os.walk(str(dir)):
for file in files:
if file.lower().endswith('.wav') and file + '.data' in files:
# Read the annotation
segments = Segment.SegmentList()
segments.parseJSON(os.path.join(root, file + '.data'))
# keep the right species
if species:
thisSpSegs = segments.getSpecies(species)
else:
thisSpSegs = np.arange(len(segments)).tolist()
# Sort the segments longest to shortest, would be a good idea to avoid making first class with only
# one member :)
segments_len = [segments[segix][1] - segments[segix][0] for segix in thisSpSegs]
inds = np.argsort(segments_len)[::-1]
sortedsegments = [segments[i] for i in inds]
# Now find syllables within each segment, median clipping
for seg in sortedsegments:
if seg[0] == -1:
continue
audiodata = self.loadFile(filename=os.path.join(root, file), duration=seg[1] - seg[0],
offset=seg[0], fs=fs, denoise=denoise, f1=f_1, f2=f_2)
start = int(seg[0] * fs)
sp = SignalProc.SignalProc(256, 128)
sp.data = audiodata
sp.sampleRate = fs
sgRaw = sp.spectrogram(256, 128)
segment = Segment.Segmenter(sp=sp, fs=fs)
syls = segment.medianClip(thr=3, medfiltersize=5, minaxislength=9, minSegment=50)
if len(syls) == 0: # Try again with FIR
syls = segment.segmentByFIR(threshold=0.05)
syls = segment.checkSegmentOverlap(syls) # merge overlapped segments
syls = [[int(s[0] * fs), int(s[1] * fs)] for s in syls]
if len(syls) == 0: # Sanity check, when annotating syllables tight,
syls = [[0, int((seg[1] - seg[0]) * fs)]] # median clipping doesn't detect it.
if len(syls) > 1:
# TODO: samples to seconds
syls = segment.joinGaps(syls, minlen_samples) # Merge short segments
if len(syls) == 1 and syls[0][1] - syls[0][0] < minlen_samples: # Sanity check
syls = [[0, int((seg[1] - seg[0]) * fs)]]
temp = [[np.round((x[0] + start) / fs, 2), np.round((x[1] + start) / fs, 2)] for x in syls]
print('\nCurrent:', seg, '--> syllables >', minlen, 'secs ', temp)
# Calculate features of the syllables in the current segment.
f = []
for s in syls:
data = audiodata[s[0]:s[1]]
if feature == 'mfcc': # MFCC
mfcc = librosa.feature.mfcc(y=data, sr=fs, n_mfcc=n_mels)
if f_1 != 0 and f_2 != 0:
mfcc = mfcc[ind_flow:ind_fhigh, :] # Limit the frequency to the fixed range [f_1, f_2]
mfcc_delta = librosa.feature.delta(mfcc, mode='nearest')
mfcc = np.concatenate((mfcc, mfcc_delta), axis=0)
mfcc = scale(mfcc, axis=1)
# librosa.display.specshow(mfcc, sr=fs, x_axis='time')
# m = [i for sublist in mfcc for i in sublist]
f.append(mfcc)
elif feature == 'we': # Wavelet Energy
ws = WaveletSegment.WaveletSegment(spInfo={})
we = ws.computeWaveletEnergy(data=data, sampleRate=fs, nlevels=5, wpmode='new')
we = we.mean(axis=1)
if f_1 != 0 and f_2 != 0:
we = we[ind_flow:ind_fhigh] # Limit the frequency to a fixed range f_1, f_2
f.append(we)
elif feature == 'chroma':
chroma = librosa.feature.chroma_cqt(y=data, sr=fs)
# chroma = librosa.feature.chroma_stft(y=data, sr=fs)
chroma = scale(chroma, axis=1)
f.append(chroma)
matched = False
if n_clusters == 0:
print('**Case 1: First class')
newclass = self.class_create(label=n_clusters, syl=syls, features=f, f_low=seg[2],
f_high=seg[3], segs=[(os.path.join(root, file), seg)],
single=single, dist_method=distance)
clusters.append(newclass)
n_clusters += 1
print('Created new class: Class ', "'", newclass["label"], "'", ',\tIn-class_d: ',
newclass["d"], '\tf_low: ', newclass["f_low"], '\tf_high: ', newclass["f_high"])
matched = True
if not matched:
# See if the syllables in the current seg match with any existing class
min_ds = [] # Keep track of the minimum distances to each class
clusters = random.sample(clusters, len(clusters)) # Shuffle the clusters to avoid bias
for c in range(len(clusters)):
f_c = clusters[c]["features"] # features of the current class c
dist_c = np.zeros((len(f_c), len(f))) # distances to the current class c
for i in range(len(f_c)):
for j in range(len(f)):
if distance == 'dtw':
d, _ = librosa.sequence.dtw(f_c[i], f[j], metric='euclidean')
dist_c[i, j] = d[d.shape[0] - 1][d.shape[1] - 1]
elif distance == 'xcor':
corr = signal.correlate(f_c[i], f[j], mode='full')
dist_c[i, j] = np.sum(corr) / max(len(f_c[i]), len(f[j]))
# Min distance to the current class
print('Distance to Class ', clusters[c]["label"], ': ', np.amin(dist_c[dist_c != 0]),
'( In-class distance: ', clusters[c]["d"], ')')
min_ds.append(np.amin(dist_c[dist_c != 0]))
# Now get the clusters sorted according to the min dist
ind = np.argsort(min_ds)
min_ds = np.sort(min_ds)
# make the cluster order
clusters = [clusters[i] for i in ind]
for c in range(len(clusters)):
if (clusters[c]["d"] != 0) and min_ds[c] < (clusters[c]["d"] + clusters[c]["d"] * 0.1):
print('**Case 2: Found a match with a class > one syllable')
print('Class ', clusters[c]["label"], ', dist ', min_ds[c])
# Update this class
clusters[c] = self.class_update(cluster=clusters[c], newfeatures=f, newf_low=seg[2],
newf_high=seg[3], newsyl=syls,
newseg=(os.path.join(root, file), seg), single=single,
dist_method=distance)
matched = True
break # found a match, exit from the for loop, go to the next segment
elif c < len(clusters) - 1:
continue # continue to the next class
# Checked most of the classes by now, if still no match found, check the classes with only one
# data point (clusters[c]["d"] == 0).
# Note the arbitrary thr.
if not matched:
if distance == 'dtw':
thr = 25
elif distance == 'xcor':
thr = 1000
for c in range(len(clusters)):
if clusters[c]["d"] == 0 and min_ds[c] < thr:
print('**Case 3: In-class dist of ', clusters[c]["label"], '=', clusters[c]["d"],
'and this example < ', thr, ' dist')
print('Class ', clusters[c]["label"], ', dist ', min_ds[c])
# Update this class
clusters[c] = self.class_update(cluster=clusters[c], newfeatures=f, newf_low=seg[2],
newf_high=seg[3], newsyl=syls,
newseg=(os.path.join(root, file), seg), single=single,
dist_method=distance)
matched = True
break # Break the search and go to the next segment
# If no match found yet, check the max clusters
if not matched:
if n_clusters == max_clusters:
print('**Case 4: Reached max classes, therefore adding current seg to the closest '
'class... ')
# min_ind = np.argmin(min_ds)
# classes are sorted in ascending order of distance already
for c in range(len(clusters)):
if min_ds[c] <= 4 * clusters[c]["d"] or clusters[c]["d"] == 0:
print('Class ', clusters[c]["label"], ', dist ', min_ds[c],
'(in-class distance:', clusters[c]["d"], ')')
# Update this class
clusters[c] = self.class_update(cluster=clusters[c], newfeatures=f, newf_low=seg[2],
newf_high=seg[3], newsyl=syls,
newseg=(os.path.join(root, file), seg),
single=single,
dist_method=distance)
matched = True
break
if not matched:
print('Class ', clusters[0]["label"], ', dist ', min_ds[0],
'(in-class distance:', clusters[0]["d"], ')')
# Update this class
# TODO: don't update the class as it is an outlier?
clusters[0] = self.class_update(cluster=clusters[0], newfeatures=f, newf_low=seg[2],
newf_high=seg[3], newsyl=syls,
newseg=(os.path.join(root, file), seg), single=single,
dist_method=distance)
matched = True
continue # Continue to next segment
# If still no luck, create a new class
if not matched:
print('**Case 5: None of Case 1-4')
newclass = self.class_create(label=n_clusters, syl=syls, features=f, f_low=seg[2], f_high=seg[3],
segs=[(os.path.join(root, file), seg)], single=single,
dist_method=distance)
print('Created a new class: Class ', n_clusters + 1)
clusters.append(newclass)
n_clusters += 1
print('Created new class: Class ', "'", newclass["label"], "'", ',\tin-class_d: ',
newclass["d"], '\tf_low: ', newclass["f_low"], '\tf_high: ', newclass["f_high"])
print('\n\n--------------Clusters created-------------------')
clustered_segs = []
for c in range(len(clusters)):
print('Class ', clusters[c]['label'], ': ', len(clusters[c]['segs']))
for s in range(len(clusters[c]['segs'])):
print('\t', clusters[c]['segs'][s])
if single:
clustered_segs.append([clusters[c]['segs'][s][0], clusters[c]['segs'][s][1],
[clusters[c]['features'][s]], clusters[c]['label']])
else:
clustered_segs.append([clusters[c]['segs'][s][0], clusters[c]['segs'][s][1], clusters[c]['label']])
# Clustered segments
print('\n\n################### Clustered segments ############################')
for s in clustered_segs:
print(s)
return clustered_segs, fs, n_clusters, 1
# return clustered_dataset, fs, nclasses, duration