forked from Miraclelucy/dive_into_deep_learning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path04-custom-layer.py
47 lines (33 loc) · 1.04 KB
/
04-custom-layer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import os
import torch
from torch import nn
from torch.nn import functional as F
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"
# 不带参数的层
class CenteredLayer(nn.Module):
def __init__(self):
super().__init__()
def forward(self, X):
return X - X.mean()
print('1.不带参数的层')
layer = CenteredLayer()
print(layer(torch.FloatTensor([1, 2, 3, 4, 5])))
net = nn.Sequential(nn.Linear(8, 128), CenteredLayer())
print(net)
Y = net(torch.rand(4, 8)) # Y是4*128维的
print(Y.mean())
# 带参数的层
class MyLinear(nn.Module):
def __init__(self, in_units, units):
super().__init__()
self.weight = nn.Parameter(torch.randn(in_units, units))
self.bias = nn.Parameter(torch.randn(units))
def forward(self, X):
linear = torch.matmul(X, self.weight.data) + self.bias.data
return F.relu(linear)
print('2.带参数的层')
linear = MyLinear(5, 3)
print(linear.weight)
print(linear(torch.rand(2, 5)))
net = nn.Sequential(MyLinear(64, 8), MyLinear(8, 1))
print(net(torch.rand(2, 64)))