-
Notifications
You must be signed in to change notification settings - Fork 38
/
Copy pathtest.py
122 lines (92 loc) · 4.45 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
# Copyright 2022 Dakewe Biotech Corporation. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import os
import time
import torch
from torch import nn
from torch.optim.swa_utils import AveragedModel
from torch.utils.data import DataLoader
import config
from dataset import CUDAPrefetcher, ImageDataset
from model import AlexNet
from utils import load_state_dict, accuracy, Summary, AverageMeter, ProgressMeter
def build_model() -> [nn.Module, nn.Module]:
model = AlexNet(config.model_num_classes)
model = model.to(device=config.device, memory_format=torch.channels_last)
ema_avg = lambda averaged_model_parameter, model_parameter, num_averaged: (1 - config.model_ema_decay) * averaged_model_parameter + config.model_ema_decay * model_parameter
ema_model = AveragedModel(model, avg_fn=ema_avg)
return model, ema_model
def load_dataset() -> CUDAPrefetcher:
test_dataset = ImageDataset(config.test_image_dir, config.image_size, "Test")
test_dataloader = DataLoader(test_dataset,
batch_size=config.batch_size,
shuffle=False,
num_workers=config.num_workers,
pin_memory=True,
drop_last=False,
persistent_workers=True)
# Place all data on the preprocessing data loader
test_prefetcher = CUDAPrefetcher(test_dataloader, config.device)
return test_prefetcher
def main() -> None:
# Initialize the model
model, ema_model = build_model()
print("Build AlexNet model successfully.")
# Load model weights
model, _, _, _, _, _ = load_state_dict(model, ema_model, config.model_path)
print(f"Load AlexNet model weights `{os.path.abspath(config.model_path)}` successfully.")
# Start the verification mode of the model.
model.eval()
# Load test dataloader
test_prefetcher = load_dataset()
# Calculate how many batches of data are in each Epoch
batches = len(test_prefetcher)
batch_time = AverageMeter("Time", ":6.3f", Summary.NONE)
acc1 = AverageMeter("Acc@1", ":6.2f", Summary.AVERAGE)
acc5 = AverageMeter("Acc@5", ":6.2f", Summary.AVERAGE)
progress = ProgressMeter(batches, [batch_time, acc1, acc5], prefix=f"Test: ")
# Initialize the number of data batches to print logs on the terminal
batch_index = 0
# Initialize the data loader and load the first batch of data
test_prefetcher.reset()
batch_data = test_prefetcher.next()
# Get the initialization test time
end = time.time()
with torch.no_grad():
while batch_data is not None:
# Transfer in-memory data to CUDA devices to speed up training
images = batch_data["image"].to(device=config.device, memory_format=torch.channels_last, non_blocking=True)
target = batch_data["target"].to(device=config.device, non_blocking=True)
# Get batch size
batch_size = images.size(0)
# Inference
output = model(images)
# measure accuracy and record loss
top1, top5 = accuracy(output, target, topk=(1, 5))
acc1.update(top1[0], batch_size)
acc5.update(top5[0], batch_size)
# Calculate the time it takes to fully train a batch of data
batch_time.update(time.time() - end)
end = time.time()
# Write the data during training to the training log file
if batch_index % (batches // 5) == 0:
progress.display(batch_index + 1)
# Preload the next batch of data
batch_data = test_prefetcher.next()
# After training a batch of data, add 1 to the number of data batches to ensure that the terminal prints data normally
batch_index += 1
# print metrics
progress.display_summary()
if __name__ == "__main__":
main()