-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbert_token_test.py
619 lines (500 loc) · 24.6 KB
/
bert_token_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
# -*- coding: utf-8 -*-
import collections
import os
import modeling
import optimization
import tokenization
import tensorflow as tf
os.environ["CUDA_VISIBLE_DEVICES"]='0'
flags = tf.flags
FLAGS = flags.FLAGS
## Required parameters
flags.DEFINE_string(
"data_dir", "./token_test/data/xy_data.txt",
"The input data dir. Should contain the .tsv files (or other data files) "
"for the task.")
flags.DEFINE_string(
"bert_config_file", "./chinese_L-12_H-768_A-12/bert_config.json",
"The config json file corresponding to the pre-trained BERT model. "
"This specifies the model architecture.")
flags.DEFINE_string("task_name", "token", "The name of the task to train.")
flags.DEFINE_string("vocab_file", "./chinese_L-12_H-768_A-12/vocab.txt",
"The vocabulary file that the BERT model was trained on.")
flags.DEFINE_string(
"output_dir", "./token_test/output_dir",
"The output directory where the model checkpoints will be written.")
## Other parameters
flags.DEFINE_bool(
"convert2Tf_record", False,
"Whether to convert source data to TF_record ")
# "./chinese_L-12_H-768_A-12/bert_model.ckpt",
flags.DEFINE_string(
"init_checkpoint", "./chinese_L-12_H-768_A-12/bert_model.ckpt",
"Initial checkpoint (usually from a pre-trained BERT model).")
flags.DEFINE_bool(
"do_lower_case", True,
"Whether to lower case the input text. Should be True for uncased "
"models and False for cased models.")
flags.DEFINE_integer(
"max_seq_length", 128,
"The maximum total input sequence length after WordPiece tokenization. "
"Sequences longer than this will be truncated, and sequences shorter "
"than this will be padded.")
flags.DEFINE_bool("do_train", False, "Whether to run training.")
flags.DEFINE_bool("do_eval", True, "Whether to run eval on the dev set.")
flags.DEFINE_bool(
"do_predict", True,
"Whether to run the model in inference mode on the test set.")
flags.DEFINE_integer("train_batch_size", 32, "Total batch size for training.")
flags.DEFINE_integer("eval_batch_size", 8, "Total batch size for eval.")
flags.DEFINE_integer("predict_batch_size", 8, "Total batch size for predict.")
flags.DEFINE_float("learning_rate", 5e-5, "The initial learning rate for Adam.")
flags.DEFINE_float("num_train_epochs", 60,
"Total number of training epochs to perform.")
flags.DEFINE_float(
"warmup_proportion", 0.1,
"Proportion of training to perform linear learning rate warmup for. "
"E.g., 0.1 = 10% of training.")
flags.DEFINE_integer("save_checkpoints_steps", 3000,
"How often to save the model checkpoint.")
flags.DEFINE_integer("iterations_per_loop", 1000,
"How many steps to make in each estimator call.")
flags.DEFINE_bool("use_tpu", False, "Whether to use TPU or GPU/CPU.")
tf.flags.DEFINE_string(
"tpu_name", None,
"The Cloud TPU to use for training. This should be either the name "
"used when creating the Cloud TPU, or a grpc://ip.address.of.tpu:8470 "
"url.")
tf.flags.DEFINE_string(
"tpu_zone", None,
"[Optional] GCE zone where the Cloud TPU is located in. If not "
"specified, we will attempt to automatically detect the GCE project from "
"metadata.")
tf.flags.DEFINE_string(
"gcp_project", None,
"[Optional] Project name for the Cloud TPU-enabled project. If not "
"specified, we will attempt to automatically detect the GCE project from "
"metadata.")
tf.flags.DEFINE_string("master", None, "[Optional] TensorFlow master URL.")
flags.DEFINE_integer(
"num_tpu_cores", 8,
"Only used if `use_tpu` is True. Total number of TPU cores to use.")
class InputExample(object):
"""A single training/test example for simple sequence classification."""
def __init__(self, guid, text_a, label=None):
self.guid = guid
self.text_a = text_a
self.label = label
class InputFeatures(object):
"""A single set of features of data."""
def __init__(self, input_ids, input_mask, segment_ids, label_ids, input_len):
self.input_ids = input_ids
self.input_mask = input_mask
self.segment_ids = segment_ids
self.label_ids = label_ids
self.input_len = input_len
class DataProcessor(object):
"""Base class for data converters for sequence classification data sets."""
def get_train_examples(self, data_dir=None):
"""Gets a collection of `InputExample`s for the train set."""
raise NotImplementedError()
def get_dev_examples(self, data_dir=None):
"""Gets a collection of `InputExample`s for the dev set."""
raise NotImplementedError()
def get_test_examples(self, data_dir=None):
"""Gets a collection of `InputExample`s for prediction."""
raise NotImplementedError()
def get_labels(self):
"""Gets the list of labels for this data set."""
raise NotImplementedError()
@classmethod
def _read_token_file(cls, input_file):
with tf.gfile.Open(input_file, 'r') as rf:
data = []
endflag = True
for line in rf:
if line == '\n':
endflag = True
assert len(data[-1]) == 2, "length of single examples must be 2 bu get {0} and {1}".format(
len(data[-1]), "*".join(data[-1]))
continue
else:
if endflag:
# add Xdata and replace " "
data.append([line.strip().replace(' ', '')])
endflag = False
else:
data[-1].append(line.strip())
return data
class TokenDataProcess(DataProcessor):
def __init__(self, data_dir=None, train_test_dev_rate=[0.6, 0.2, 0.2], is_shuffle=True):
if data_dir:
self.data_dir = data_dir
assert sum(train_test_dev_rate) == 1, "sum of train_test_dev_rate must be 1.0"
self.train_test_dev_rate = train_test_dev_rate
self.is_shuffle = is_shuffle
self.is_prepare_data = False
def _prepare_data(self):
if not self.is_prepare_data and self.data_dir:
self.data = self._read_token_file(self.data_dir)
self.data_size = len(self.data)
if self.is_shuffle:
import random
random.shuffle(self.data)
self.is_prepare_data = True
@classmethod
def get_labels(cls):
return ["S", "M", "E"]
def get_train_examples_size(self):
self._prepare_data()
return int(self.data_size * self.train_test_dev_rate[0])
def get_train_examples(self, data_dir=None):
if data_dir:
data = self._read_token_file(data_dir)
else:
self._prepare_data()
assert self.data_dir is not None, "you must set data_dir on initial or get_XXX_examples"
data = self.data[:int(self.data_size * self.train_test_dev_rate[0])]
examples = []
for i, xdata in enumerate(data):
guid = "train-%d" % (i)
text_a = tokenization.convert_to_unicode(xdata[0])
label = tokenization.convert_to_unicode(xdata[1])
examples.append(
InputExample(guid, text_a, label)
)
return examples
def get_test_examples(self, data_dir=None):
if data_dir:
data = self._read_token_file(data_dir)
else:
self._prepare_data()
assert self.data_dir is not None, "you must set data_dir on initial or get_XXX_examples"
data = self.data[int(self.data_size * self.train_test_dev_rate[0]):int(
self.data_size * sum(self.train_test_dev_rate[:2]))]
examples = []
for i, xdata in enumerate(data):
guid = "test-%d" % (i)
text_a = tokenization.convert_to_unicode(xdata[0])
label = tokenization.convert_to_unicode(xdata[1])
examples.append(
InputExample(guid, text_a, label)
)
return examples
def get_dev_examples(self, data_dir=None):
if data_dir:
data = self._read_token_file(data_dir)
else:
self._prepare_data()
assert self.data_dir is not None, "you must set data_dir on initial or get_XXX_examples"
data = self.data[int(self.data_size * sum(self.train_test_dev_rate[:2])):]
examples = []
for i, xdata in enumerate(data):
guid = "dev-%d" % (i)
text_a = tokenization.convert_to_unicode(xdata[0])
label = tokenization.convert_to_unicode(xdata[1])
examples.append(
InputExample(guid, text_a, label)
)
return examples
def convert_single_example(ex_index, example, label_list, max_seq_length,
tokenizer):
"""Converts a single `InputExample` into a single `InputFeatures`."""
assert len(example.text_a) == len(example.label), 'id: {2} textlen is {0} and labellen is {1} \n'.format(
len(example.text_a), len(example.label), ex_index) + example.text_a + '\n' + example.label
label_map = {}
for (i, label) in enumerate(label_list):
label_map[label] = i
tokens_a = tokenizer.tokenize(example.text_a)
label = list(example.label)
if len(tokens_a) > max_seq_length - 2:
tokens_a = tokens_a[0:(max_seq_length - 2)]
label = label[0:(max_seq_length - 2)]
tokens = []
labels = []
segment_ids = []
tokens.append("[CLS]")
labels.append(label_list[0]) # append "S" to CLS and SEP
segment_ids.append(0)
tokens_a_len = len(tokens_a)
for token, xlabel in zip(tokens_a, label):
tokens.append(token)
labels.append(xlabel)
segment_ids.append(0)
tokens.append("[SEP]")
labels.append(label_list[0]) # append "S" to CLS and SEP
segment_ids.append(0)
input_ids = tokenizer.convert_tokens_to_ids(tokens)
label_ids = list(map(lambda x: label_map[x], labels))
# The mask has 1 for real tokens and 0 for padding tokens. Only real
# tokens are attended to.
input_mask = [1] * len(input_ids)
# Zero-pad up to the sequence length.
while len(input_ids) < max_seq_length:
input_ids.append(0)
input_mask.append(0)
label_ids.append(0)
segment_ids.append(0)
assert len(input_ids) == max_seq_length
assert len(input_mask) == max_seq_length
assert len(segment_ids) == max_seq_length
assert len(label_ids) == max_seq_length
if ex_index < 5:
tf.logging.info("*** Example ***")
tf.logging.info("guid: %s" % (example.guid))
tf.logging.info("tokens: %s" % " ".join(
[tokenization.printable_text(x) for x in tokens]))
tf.logging.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
tf.logging.info("input_mask: %s" % " ".join([str(x) for x in input_mask]))
tf.logging.info("segment_ids: %s" % " ".join([str(x) for x in segment_ids]))
tf.logging.info("label: %s \n(id = %s)" % (example.label, " ".join([str(x) for x in label_ids])))
feature = InputFeatures(
input_ids=input_ids,
input_mask=input_mask,
segment_ids=segment_ids,
label_ids=label_ids,
input_len=tokens_a_len)
return feature
def file_based_convert_examples_to_features(
examples, label_list, max_seq_length, tokenizer, output_file):
"""Convert a set of `InputExample`s to a TFRecord file."""
writer = tf.python_io.TFRecordWriter(output_file)
def create_int_feature(values):
f = tf.train.Feature(int64_list=tf.train.Int64List(value=list(values)))
return f
for (ex_index, example) in enumerate(examples):
if ex_index % 10000 == 0:
tf.logging.info("Writing example %d of %d" % (ex_index, len(examples)))
feature = convert_single_example(ex_index, example, label_list,
max_seq_length, tokenizer)
features = collections.OrderedDict()
features["input_ids"] = create_int_feature(feature.input_ids)
features["input_mask"] = create_int_feature(feature.input_mask)
features["segment_ids"] = create_int_feature(feature.segment_ids)
features["label_ids"] = create_int_feature(feature.label_ids)
features["input_len"] = create_int_feature([feature.input_len])
tf_example = tf.train.Example(features=tf.train.Features(feature=features))
writer.write(tf_example.SerializeToString())
writer.close()
def file_based_input_fn_builder(input_file, seq_length, is_training,
drop_remainder):
"""Creates an `input_fn` closure to be passed to TPUEstimator."""
name_to_features = {
"input_ids": tf.FixedLenFeature([seq_length], tf.int64),
"input_mask": tf.FixedLenFeature([seq_length], tf.int64),
"segment_ids": tf.FixedLenFeature([seq_length], tf.int64),
"label_ids": tf.FixedLenFeature([seq_length], tf.int64),
"input_len": tf.FixedLenFeature([], tf.int64)
}
def _decode_record(record, name_to_features):
"""Decodes a record to a TensorFlow example."""
example = tf.parse_single_example(record, name_to_features)
# tf.Example only supports tf.int64, but the TPU only supports tf.int32.
# So cast all int64 to int32.
for name in list(example.keys()):
t = example[name]
if t.dtype == tf.int64:
t = tf.to_int32(t)
example[name] = t
return example
def input_fn(params):
"""The actual input function."""
batch_size = params["batch_size"]
# For training, we want a lot of parallel reading and shuffling.
# For eval, we want no shuffling and parallel reading doesn't matter.
d = tf.data.TFRecordDataset(input_file)
if is_training:
d = d.repeat()
d = d.shuffle(buffer_size=100)
d = d.apply(
tf.contrib.data.map_and_batch(
lambda record: _decode_record(record, name_to_features),
batch_size=batch_size,
drop_remainder=drop_remainder))
return d
return input_fn
def create_model(bert_config, is_training, input_ids, input_len, input_mask, segment_ids,
labels, num_labels, use_one_hot_embeddings):
"""Creates a sequence model."""
model = modeling.BertModel(
config=bert_config,
is_training=is_training,
input_ids=input_ids,
input_mask=input_mask,
token_type_ids=segment_ids,
use_one_hot_embeddings=use_one_hot_embeddings)
final_hidden = model.get_sequence_output()
final_hidden_shape = modeling.get_shape_list(final_hidden, expected_rank=3)
batch_size = final_hidden_shape[0]
seq_length = final_hidden_shape[1]
hidden_size = final_hidden_shape[2]
output_size = num_labels
with tf.variable_scope("bert_finetuning"):
output_weights = tf.get_variable(
"token_output_weights", [output_size, hidden_size],
initializer=tf.truncated_normal_initializer(stddev=0.02))
output_bias = tf.get_variable(
"token_output_bias", [output_size], initializer=tf.zeros_initializer())
final_hidden_matrix = tf.reshape(final_hidden,
[batch_size * seq_length, hidden_size])
logits = tf.matmul(final_hidden_matrix, output_weights, transpose_b=True)
logits = tf.nn.bias_add(logits, output_bias)
logits = tf.reshape(logits, [batch_size, seq_length, output_size])
one_hot_labels = tf.one_hot(labels, depth=num_labels, axis=-1, dtype=tf.float32)
entropy_loss = tf.nn.softmax_cross_entropy_with_logits(labels=one_hot_labels, logits=logits, dim=-1,
name="loss")
per_example_loss = tf.reduce_sum(tf.slice(entropy_loss,begin=[0,1],size=[-1,input_len[0]]), axis=-1)
loss = tf.reduce_mean(per_example_loss)
probs = tf.nn.softmax(logits, axis=-1)
return (loss, per_example_loss, probs, logits)
def model_fn_builder(bert_config, num_labels, init_checkpoint, learning_rate,
num_train_steps, num_warmup_steps, use_one_hot_embeddings):
"""Returns `model_fn` closure for Estimator."""
def model_fn(features, labels, mode, params):
tf.logging.info("*** Features ***")
for name in sorted(features.keys()):
tf.logging.info(" name = %s, shape = %s" % (name, features[name].shape))
input_ids = features["input_ids"]
input_mask = features["input_mask"]
segment_ids = features["segment_ids"]
label_ids = features["label_ids"]
input_len= features["input_len"]
is_training = (mode == tf.estimator.ModeKeys.TRAIN)
(total_loss, per_example_loss, probabilities, logits) = create_model(
bert_config, is_training, input_ids, input_len, input_mask, segment_ids, label_ids,
num_labels, use_one_hot_embeddings)
tvars = tf.trainable_variables()
initialized_variable_names = {}
if init_checkpoint:
(assignment_map, initialized_variable_names
) = modeling.get_assignment_map_from_checkpoint(tvars, init_checkpoint)
tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
tf.logging.info("**** Trainable Variables ****")
for var in tvars:
init_string = ""
if var.name in initialized_variable_names:
init_string = ", *INIT_FROM_CKPT*"
tf.logging.info(" name = %s, shape = %s%s", var.name, var.shape,
init_string)
if mode == tf.estimator.ModeKeys.TRAIN:
train_op = optimization.create_optimizer(
total_loss, learning_rate, num_train_steps, num_warmup_steps
)
predictions = tf.argmax(logits, axis=-1, output_type=tf.int32)
accuracy = tf.metrics.accuracy(label_ids, predictions)
tf.summary.scalar("accuracy", accuracy[1])
output_spec = tf.estimator.EstimatorSpec(mode=mode, loss=total_loss, train_op=train_op)
elif mode == tf.estimator.ModeKeys.EVAL:
predictions = tf.argmax(logits, axis=-1, output_type=tf.int32)
accuracy = tf.metrics.accuracy(label_ids, predictions)
eval_loss = tf.metrics.mean(per_example_loss)
eval_metrics = {"accuracy": accuracy, "eval_loss": eval_loss}
tf.summary.scalar("accuracy", accuracy[1])
tf.summary.scalar("eval_loss", eval_loss[1])
output_spec = tf.estimator.EstimatorSpec(mode=mode, loss=total_loss, eval_metric_ops=eval_metrics)
else:
predictions = tf.argmax(logits, axis=-1, output_type=tf.int32)
output_spec = tf.estimator.EstimatorSpec(mode=mode, predictions={"predictions": predictions,
"probabilities": probabilities})
return output_spec
return model_fn
def main(_):
tf.logging.set_verbosity(tf.logging.INFO)
if not FLAGS.do_train and not FLAGS.do_eval and not FLAGS.do_predict:
raise ValueError(
"At least one of `do_train`, `do_eval` or `do_predict' must be True.")
bert_config_file = os.path.abspath(FLAGS.bert_config_file)
bert_config = modeling.BertConfig.from_json_file(bert_config_file)
if FLAGS.max_seq_length > bert_config.max_position_embeddings:
raise ValueError(
"Cannot use sequence length %d because the BERT model "
"was only trained up to sequence length %d" %
(FLAGS.max_seq_length, bert_config.max_position_embeddings))
if not tf.gfile.Exists(os.path.abspath(FLAGS.output_dir)):
tf.gfile.MakeDirs(os.path.abspath(FLAGS.output_dir))
label_list = TokenDataProcess.get_labels()
max_seq_length = FLAGS.max_seq_length
data_path = os.path.abspath(FLAGS.data_dir)
dataprocess = TokenDataProcess(data_path, train_test_dev_rate=[0.65, 0.2, 0.15])
tokenizer = tokenization.FullTokenizer(
vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case)
train_examples = None
num_train_steps = None
num_warmup_steps = None
# build model
if FLAGS.do_train:
num_train_steps = int(
dataprocess.get_train_examples_size() / FLAGS.train_batch_size * FLAGS.num_train_epochs)
num_warmup_steps = int(num_train_steps * FLAGS.warmup_proportion)
# multi-GPU
distribute = None
# distribute=tf.contrib.distribute.MirroredStrategy(num_gpus=4)
run_config = tf.estimator.RunConfig(
model_dir=os.path.abspath(FLAGS.output_dir),
save_summary_steps=10,
save_checkpoints_steps=FLAGS.save_checkpoints_steps,
train_distribute=distribute,
eval_distribute=distribute
)
model_fn = model_fn_builder(bert_config=bert_config,
num_labels=len(label_list),
init_checkpoint=os.path.abspath(FLAGS.init_checkpoint),
learning_rate=FLAGS.learning_rate,
num_train_steps=num_train_steps,
num_warmup_steps=num_warmup_steps,
use_one_hot_embeddings=False # when use tpu ,it's True
)
estimator = tf.estimator.Estimator(
model_fn=model_fn,
config=run_config
)
# data path
train_file = os.path.join(os.path.abspath(FLAGS.output_dir), "train.tf_record")
eval_file = os.path.join(os.path.abspath(FLAGS.output_dir), "eval.tf_record")
predict_file = os.path.join(os.path.abspath(FLAGS.output_dir), "predict.tf_record")
if FLAGS.convert2Tf_record:
train_examples = dataprocess.get_train_examples()
file_based_convert_examples_to_features(train_examples, label_list, max_seq_length, tokenizer, train_file)
tf.logging.info(" Num train_examples = %d", len(train_examples))
eval_examples = dataprocess.get_dev_examples()
file_based_convert_examples_to_features(eval_examples, label_list, max_seq_length, tokenizer, eval_file)
tf.logging.info(" Num dev_examples = %d", len(eval_examples))
predict_examples = dataprocess.get_test_examples()
file_based_convert_examples_to_features(predict_examples, label_list, max_seq_length, tokenizer, predict_file)
tf.logging.info(" Num test_examples = %d", len(predict_examples))
if FLAGS.do_train:
tf.logging.info("***** Running training *****")
tf.logging.info(" Batch size = %d", FLAGS.train_batch_size)
tf.logging.info(" Num steps = %d", num_train_steps)
train_dataset_fn = file_based_input_fn_builder(train_file, max_seq_length, is_training=True,
drop_remainder=True)
estimator.train(input_fn=lambda: train_dataset_fn({"batch_size": FLAGS.train_batch_size}),
max_steps=num_train_steps)
if FLAGS.do_eval:
tf.logging.info("***** Running evaluation *****")
tf.logging.info(" Batch size = %d", FLAGS.eval_batch_size)
eval_dataset_fn = file_based_input_fn_builder(eval_file, max_seq_length, is_training=False,
drop_remainder=False)
result = estimator.evaluate(input_fn=lambda: eval_dataset_fn({"batch_size": FLAGS.train_batch_size}),
steps=None)
output_eval_file = os.path.join(os.path.abspath(FLAGS.output_dir), "eval_results.txt")
with tf.gfile.GFile(output_eval_file, "w") as writer:
tf.logging.info("***** Eval results *****")
for key in sorted(result.keys()):
tf.logging.info(" %s = %s", key, str(result[key]))
writer.write("%s = %s\n" % (key, str(result[key])))
if FLAGS.do_predict:
tf.logging.info("***** Running prediction*****")
tf.logging.info(" Batch size = %d", FLAGS.predict_batch_size)
predict_dataset_fn = file_based_input_fn_builder(predict_file, max_seq_length, is_training=False,
drop_remainder=False)
result = estimator.predict(input_fn=lambda: predict_dataset_fn({"batch_size": FLAGS.train_batch_size}))
output_predict_file = os.path.join(FLAGS.output_dir, "test_results.tsv")
with tf.gfile.GFile(output_predict_file, "w") as writer:
tf.logging.info("***** Predict results *****")
for prediction in result:
output_line = "\t".join(
str(class_probability) for class_probability in prediction) + "\n"
writer.write(output_line)
if __name__ == "__main__":
tf.app.run()