-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmulti_Gauss_denoise.py
42 lines (36 loc) · 1.35 KB
/
multi_Gauss_denoise.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
from utils.image_io import *
from utils.Gauss_denoise_class import Denoise
import os
from os import listdir, getcwd
from os.path import join
def img_preprocess(img_name, sigma, times):
img_org = prepare_image(img_name)
sigma_ = sigma / 255.
img_noise = []
for i in range(times):
_, temp_img_noise = get_noisy_image(img_org, sigma_)
#_, temp_img_noise = get_salt_noisy_image(img_org, sigma)
img_noise.append(temp_img_noise)
return img_org, img_noise
def denoise(image_name, output_dir, img_org, img_noise, learning_rate=0.01, num_iter=6000, show_every=5000):
print(output_dir)
plot_during_training = True
de = Denoise(image_name, output_dir, img_org, img_noise, learning_rate, num_iter, show_every, plot_during_training)
de.optimize()
de.finalize()
if __name__ == "__main__":
# noise var
output_dir = "/output/"
number_img = 4
num_iter = 5000
show_every = 500000
learning_rate = 0.01
source_folder = "./dataset/input/"
file_list = os.listdir(source_folder)
sigma = 50
print(sigma)
for file_obj in file_list:
img_name = file_obj
print(img_name)
img_org, img_noise = img_preprocess(source_folder + img_name, sigma, number_img)
denoise("multi-" + img_name.split('.')[0], output_dir, img_org, img_noise, learning_rate, num_iter, show_every)