-
Notifications
You must be signed in to change notification settings - Fork 13
/
train_ribseg.py
313 lines (276 loc) · 14 KB
/
train_ribseg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
"""
Author: Benny
Date: Nov 2019
"""
import argparse
import os
from data_utils.RibFracDataLoader_1cls import PartNormalDataset
import data_utils.data_trans as d_utils
import torchvision
import torch
import datetime
import logging
from pathlib import Path
import sys
import importlib
import shutil
from tqdm import tqdm
import provider
import numpy as np
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
ROOT_DIR = BASE_DIR
sys.path.append(os.path.join(ROOT_DIR, 'models'))
# seg_classes = {'rib':[0,1]}
seg_classes = {'rib':[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24],'Earphone': [44, 45], 'Motorbike': [30, 31, 32, 33, 34, 35], 'Rocket': [41, 42, 43],
'Car': [29], 'Laptop': [28 ], 'Cap': [26], 'Skateboard': [46],
'Mug': [36], 'Guitar': [39, 40], 'Bag': [27], 'Lamp': [25],
'Table': [47], 'Airplane': [48], 'Pistol': [38],
'Chair': [37], 'Knife': [49]}
seg_label_to_cat = {} # {0:Airplane, 1:Airplane, ...49:Table}
for cat in seg_classes.keys():
for label in seg_classes[cat]:
seg_label_to_cat[label] = cat
def to_categorical(y, num_classes):
""" 1-hot encodes a tensor """
new_y = torch.eye(num_classes)[y.cpu().data.numpy(),]
if (y.is_cuda):
return new_y.cuda()
return new_y
def parse_args():
parser = argparse.ArgumentParser('Model')
parser.add_argument('--model', type=str, default='pointnet2_part_seg_msg', help='model name [default: pointnet2_part_seg_msg]')
parser.add_argument('--batch_size', type=int, default=8, help='Batch Size during training [default: 16]')
parser.add_argument('--epoch', default=251, type=int, help='Epoch to run [default: 251]')
parser.add_argument('--learning_rate', default=0.001, type=float, help='Initial learning rate [default: 0.001]')
parser.add_argument('--gpu', type=str, default='0', help='GPU to use [default: GPU 0]')
parser.add_argument('--optimizer', type=str, default='Adam', help='Adam or SGD [default: Adam]')
parser.add_argument('--log_dir', type=str, default=None, help='Log path [default: None]')
parser.add_argument('--decay_rate', type=float, default=1e-4, help='weight decay [default: 1e-4]')
parser.add_argument('--npoint', type=int, default=30000, help='Point Number [default: 2048]')
parser.add_argument('--normal', action='store_true', default=False, help='Whether to use normal information [default: False]')
parser.add_argument('--step_size', type=int, default=20, help='Decay step for lr decay [default: every 20 epochs]')
parser.add_argument('--lr_decay', type=float, default=0.5, help='Decay rate for lr decay [default: 0.5]')
return parser.parse_args()
def main(args):
def log_string(str):
logger.info(str)
print(str)
'''HYPER PARAMETER'''
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu
'''CREATE DIR'''
timestr = str(datetime.datetime.now().strftime('%Y-%m-%d_%H-%M'))
experiment_dir = Path('./log/')
experiment_dir.mkdir(exist_ok=True)
experiment_dir = experiment_dir.joinpath('part_seg')
experiment_dir.mkdir(exist_ok=True)
if args.log_dir is None:
experiment_dir = experiment_dir.joinpath(timestr)
else:
experiment_dir = experiment_dir.joinpath(args.log_dir)
experiment_dir.mkdir(exist_ok=True)
checkpoints_dir = experiment_dir.joinpath('checkpoints/')
checkpoints_dir.mkdir(exist_ok=True)
log_dir = experiment_dir.joinpath('logs/')
log_dir.mkdir(exist_ok=True)
'''LOG'''
args = parse_args()
logger = logging.getLogger("Model")
logger.setLevel(logging.INFO)
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
file_handler = logging.FileHandler('%s/%s.txt' % (log_dir, args.model))
file_handler.setLevel(logging.INFO)
file_handler.setFormatter(formatter)
logger.addHandler(file_handler)
log_string('PARAMETER ...')
log_string(args)
root = './data/pn/'
transforms = torchvision.transforms.Compose(
[
d_utils.PointcloudToTensor(),
# d_utils.PointcloudRotate(axis=np.array([1, 0, 0])),
d_utils.PointcloudScale(),
d_utils.PointcloudTranslate(),
d_utils.PointcloudJitter(),
]
)
TRAIN_DATASET = PartNormalDataset(root = root, npoints=args.npoint, split='trainval',transforms=transforms, normal_channel=args.normal)
trainDataLoader = torch.utils.data.DataLoader(TRAIN_DATASET, batch_size=args.batch_size,shuffle=True, num_workers=0)
TEST_DATASET = PartNormalDataset(root = root, npoints=args.npoint, split='test', transforms=None,normal_channel=args.normal)
testDataLoader = torch.utils.data.DataLoader(TEST_DATASET, batch_size=args.batch_size,shuffle=False, num_workers=0)
log_string("The number of training data is: %d" % len(TRAIN_DATASET))
log_string("The number of test data is: %d" % len(TEST_DATASET))
num_classes = 16 #1
num_part = 50 #2
'''MODEL LOADING'''
MODEL = importlib.import_module(args.model)
shutil.copy('models/%s.py' % args.model, str(experiment_dir))
shutil.copy('models/pointnet_util.py', str(experiment_dir))
classifier = MODEL.get_model(num_part, normal_channel=args.normal).cuda()
criterion = MODEL.get_loss().cuda()
def weights_init(m):
classname = m.__class__.__name__
if classname.find('Conv2d') != -1:
torch.nn.init.xavier_normal_(m.weight.data)
torch.nn.init.constant_(m.bias.data, 0.0)
elif classname.find('Linear') != -1:
torch.nn.init.xavier_normal_(m.weight.data)
torch.nn.init.constant_(m.bias.data, 0.0)
try:
checkpoint = torch.load(str(experiment_dir) + '/checkpoints/best_model.pth')
start_epoch = checkpoint['epoch']
classifier.load_state_dict(checkpoint['model_state_dict'])
log_string('Use pretrain model')
except:
log_string('No existing model, starting training from scratch...')
start_epoch = 0
classifier = classifier.apply(weights_init)
if args.optimizer == 'Adam':
optimizer = torch.optim.Adam(
classifier.parameters(),
lr=args.learning_rate,
betas=(0.9, 0.999),
eps=1e-08,
weight_decay=args.decay_rate
)
else:
optimizer = torch.optim.SGD(classifier.parameters(), lr=args.learning_rate, momentum=0.9)
def bn_momentum_adjust(m, momentum):
if isinstance(m, torch.nn.BatchNorm2d) or isinstance(m, torch.nn.BatchNorm1d):
m.momentum = momentum
LEARNING_RATE_CLIP = 1e-5
MOMENTUM_ORIGINAL = 0.1
MOMENTUM_DECCAY = 0.5
MOMENTUM_DECCAY_STEP = args.step_size
best_acc = 0
global_epoch = 0
best_class_avg_iou = 0
best_inctance_avg_iou = 0
for epoch in range(start_epoch,args.epoch):
log_string('Epoch %d (%d/%s):' % (global_epoch + 1, epoch + 1, args.epoch))
'''Adjust learning rate and BN momentum'''
lr = max(args.learning_rate * (args.lr_decay ** (epoch // args.step_size)), LEARNING_RATE_CLIP)
log_string('Learning rate:%f' % lr)
for param_group in optimizer.param_groups:
param_group['lr'] = lr
mean_correct = []
momentum = MOMENTUM_ORIGINAL * (MOMENTUM_DECCAY ** (epoch // MOMENTUM_DECCAY_STEP))
if momentum < 0.01:
momentum = 0.01
print('BN momentum updated to: %f' % momentum)
classifier = classifier.apply(lambda x: bn_momentum_adjust(x,momentum))
'''learning one epoch'''
for i, data in tqdm(enumerate(trainDataLoader), total=len(trainDataLoader), smoothing=0.9):
points, label, target = data
# print(points.shape,label.shape,target.shape)
points = points.data.numpy()
points[:,:, 0:3] = provider.random_scale_point_cloud(points[:,:, 0:3])
points[:,:, 0:3] = provider.shift_point_cloud(points[:,:, 0:3])
points = torch.Tensor(points)
points, label, target = points.float().cuda(),label.long().cuda(), target.long().cuda()
points = points.transpose(2, 1)
optimizer.zero_grad()
classifier = classifier.train()
# print(points.size())
# print('label:',label,label.size())
a=to_categorical(label, num_classes)
# print('ssss:',a,a.size())
seg_pred, trans_feat = classifier(points, to_categorical(label, num_classes))
seg_pred = seg_pred.contiguous().view(-1, num_part)
# print('seg_pred',seg_pred.shape)
target = target.view(-1, 1)[:, 0]
pred_choice = seg_pred.data.max(1)[1]
correct = pred_choice.eq(target.data).cpu().sum()
mean_correct.append(correct.item() / (args.batch_size * args.npoint))
loss = criterion(seg_pred, target, trans_feat)
loss.backward()
optimizer.step()
train_instance_acc = np.mean(mean_correct)
log_string('Train accuracy is: %.5f' % train_instance_acc)
with torch.no_grad():
test_metrics = {}
total_correct = 0
total_seen = 0
total_seen_class = [0 for _ in range(num_part)]
total_correct_class = [0 for _ in range(num_part)]
shape_ious = {cat: [] for cat in seg_classes.keys()}
seg_label_to_cat = {} # {0:Airplane, 1:Airplane, ...49:Table}
for cat in seg_classes.keys():
for label in seg_classes[cat]:
seg_label_to_cat[label] = cat
for batch_id, (points, label, target) in tqdm(enumerate(testDataLoader), total=len(testDataLoader), smoothing=0.9):
cur_batch_size, NUM_POINT, _ = points.size()
points, label, target = points.float().cuda(), label.long().cuda(), target.long().cuda()
points = points.transpose(2, 1)
classifier = classifier.eval()
seg_pred, _ = classifier(points, to_categorical(label, num_classes))
cur_pred_val = seg_pred.cpu().data.numpy()
cur_pred_val_logits = cur_pred_val
cur_pred_val = np.zeros((cur_batch_size, NUM_POINT)).astype(np.int32)
target = target.cpu().data.numpy()
for i in range(cur_batch_size):
cat = seg_label_to_cat[target[i, 0]]
logits = cur_pred_val_logits[i, :, :]
cur_pred_val[i, :] = np.argmax(logits[:, seg_classes[cat]], 1) + seg_classes[cat][0]
correct = np.sum(cur_pred_val == target)
total_correct += correct
total_seen += (cur_batch_size * NUM_POINT)
for l in range(num_part):
total_seen_class[l] += np.sum(target == l)
total_correct_class[l] += (np.sum((cur_pred_val == l) & (target == l)))
for i in range(cur_batch_size):
segp = cur_pred_val[i, :]
segl = target[i, :]
cat = seg_label_to_cat[segl[0]]
part_ious = [0.0 for _ in range(len(seg_classes[cat]))]
for l in seg_classes[cat]:
if (np.sum(segl == l) == 0) and (
np.sum(segp == l) == 0): # part is not present, no prediction as well
part_ious[l - seg_classes[cat][0]] = 1.0
else:
part_ious[l - seg_classes[cat][0]] = np.sum((segl == l) & (segp == l)) / float(
np.sum((segl == l) | (segp == l)))
shape_ious[cat].append(np.mean(part_ious))
all_shape_ious = []
for cat in shape_ious.keys():
for iou in shape_ious[cat]:
all_shape_ious.append(iou)
shape_ious[cat] = np.mean(shape_ious[cat])
mean_shape_ious = np.mean(list(shape_ious.values()))
test_metrics['accuracy'] = total_correct / float(total_seen)
test_metrics['class_avg_accuracy'] = np.mean(
np.array(total_correct_class) / np.array(total_seen_class, dtype=np.float))
for cat in sorted(shape_ious.keys()):
log_string('eval mIoU of %s %f' % (cat + ' ' * (14 - len(cat)), shape_ious[cat]))
test_metrics['class_avg_iou'] = mean_shape_ious
test_metrics['inctance_avg_iou'] = np.mean(all_shape_ious)
log_string('Epoch %d test Accuracy: %f Class avg mIOU: %f Inctance avg mIOU: %f' % (
epoch+1, test_metrics['accuracy'],test_metrics['class_avg_iou'],test_metrics['inctance_avg_iou']))
if (test_metrics['inctance_avg_iou'] >= best_inctance_avg_iou):
logger.info('Save model...')
savepath = str(checkpoints_dir) + '/best_model.pth'
log_string('Saving at %s'% savepath)
state = {
'epoch': epoch,
'train_acc': train_instance_acc,
'test_acc': test_metrics['accuracy'],
'class_avg_iou': test_metrics['class_avg_iou'],
'inctance_avg_iou': test_metrics['inctance_avg_iou'],
'model_state_dict': classifier.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
}
torch.save(state, savepath)
log_string('Saving model....')
if test_metrics['accuracy'] > best_acc:
best_acc = test_metrics['accuracy']
if test_metrics['class_avg_iou'] > best_class_avg_iou:
best_class_avg_iou = test_metrics['class_avg_iou']
if test_metrics['inctance_avg_iou'] > best_inctance_avg_iou:
best_inctance_avg_iou = test_metrics['inctance_avg_iou']
print('Dice:',loss)
log_string('Best accuracy is: %.5f'%best_acc)
log_string('Best class avg mIOU is: %.5f'%best_class_avg_iou)
log_string('Best inctance avg mIOU is: %.5f'%best_inctance_avg_iou)
global_epoch+=1
if __name__ == '__main__':
args = parse_args()
main(args)