Skip to content

Latest commit

 

History

History
2522 lines (1680 loc) · 61.6 KB

README.md

File metadata and controls

2522 lines (1680 loc) · 61.6 KB

简体中文 | English

FightingCV 代码库, 包含 Attention,Backbone, MLP, Re-parameter, Convolution

Hello,大家好,我是小马🚀🚀🚀

For 小白(Like Me): 最近在读论文的时候会发现一个问题,有时候论文核心思想非常简单,核心代码可能也就十几行。但是打开作者release的源码时,却发现提出的模块嵌入到分类、检测、分割等任务框架中,导致代码比较冗余,对于特定任务框架不熟悉的我,很难找到核心代码,导致在论文和网络思想的理解上会有一定困难。

For 进阶者(Like You): 如果把Conv、FC、RNN这些基本单元看做小的Lego积木,把Transformer、ResNet这些结构看成已经搭好的Lego城堡。那么本项目提供的模块就是一个个具有完整语义信息的Lego组件。让科研工作者们避免反复造轮子,只需思考如何利用这些“Lego组件”,搭建出更多绚烂多彩的作品。

For 大神(May Be Like You): 能力有限,不喜轻喷!!!

For All: 本项目就是要实现一个既能让深度学习小白也能搞懂,又能服务科研和工业社区的代码库。作为FightingCV公众号FightingCV-Paper-Reading 的补充,本项目的宗旨是从代码角度,实现🚀让世界上没有难读的论文🚀。

(同时也非常欢迎各位科研工作者将自己的工作的核心代码整理到本项目中,推动科研社区的发展,会在readme中注明代码的作者~)

技术交流

欢迎大家关注公众号:FightingCV

FightingCV公众号 小助手微信 (备注【公司/学校+方向+ID】)
  • 公众号每天都会进行论文、算法和代码的干货分享哦~

  • 交流群每天分享一些最新的论文和解析,欢迎大家一起学习交流哈~~~ (加不进去可以加微信:775629340,记得备注【公司/学校+方向+ID】)


🔥🔥🔥 重磅!!!作为项目补充,更多论文层面的解析,可以关注新开源的项目 FightingCV-Paper-Reading ,里面汇集和整理了各大顶会顶刊的论文解析

🔥🔥🔥 重磅!!!最近全新开源了一个 YOLOAir 目标检测代码库 ,里面集成了多种YOLO模型,包括YOLOv5, YOLOv7,YOLOR, YOLOX,YOLOv4, YOLOv3以及其他YOLO模型,还包括多种现有Attention机制。

acff451cb342be80bff0963e0a03138

🔥🔥🔥 ECCV2022论文汇总:ECCV2022-Paper-List


目录


Attention Series


1. External Attention Usage

1.1. Paper

"Beyond Self-attention: External Attention using Two Linear Layers for Visual Tasks"

1.2. Overview

1.3. Usage Code

from model.attention.ExternalAttention import ExternalAttention
import torch

input=torch.randn(50,49,512)
ea = ExternalAttention(d_model=512,S=8)
output=ea(input)
print(output.shape)

2. Self Attention Usage

2.1. Paper

"Attention Is All You Need"

1.2. Overview

1.3. Usage Code

from model.attention.SelfAttention import ScaledDotProductAttention
import torch

input=torch.randn(50,49,512)
sa = ScaledDotProductAttention(d_model=512, d_k=512, d_v=512, h=8)
output=sa(input,input,input)
print(output.shape)

3. Simplified Self Attention Usage

3.1. Paper

None

3.2. Overview

3.3. Usage Code

from model.attention.SimplifiedSelfAttention import SimplifiedScaledDotProductAttention
import torch

input=torch.randn(50,49,512)
ssa = SimplifiedScaledDotProductAttention(d_model=512, h=8)
output=ssa(input,input,input)
print(output.shape)

4. Squeeze-and-Excitation Attention Usage

4.1. Paper

"Squeeze-and-Excitation Networks"

4.2. Overview

4.3. Usage Code

from model.attention.SEAttention import SEAttention
import torch

input=torch.randn(50,512,7,7)
se = SEAttention(channel=512,reduction=8)
output=se(input)
print(output.shape)

5. SK Attention Usage

5.1. Paper

"Selective Kernel Networks"

5.2. Overview

5.3. Usage Code

from model.attention.SKAttention import SKAttention
import torch

input=torch.randn(50,512,7,7)
se = SKAttention(channel=512,reduction=8)
output=se(input)
print(output.shape)

6. CBAM Attention Usage

6.1. Paper

"CBAM: Convolutional Block Attention Module"

6.2. Overview

6.3. Usage Code

from model.attention.CBAM import CBAMBlock
import torch

input=torch.randn(50,512,7,7)
kernel_size=input.shape[2]
cbam = CBAMBlock(channel=512,reduction=16,kernel_size=kernel_size)
output=cbam(input)
print(output.shape)

7. BAM Attention Usage

7.1. Paper

"BAM: Bottleneck Attention Module"

7.2. Overview

7.3. Usage Code

from model.attention.BAM import BAMBlock
import torch

input=torch.randn(50,512,7,7)
bam = BAMBlock(channel=512,reduction=16,dia_val=2)
output=bam(input)
print(output.shape)

8. ECA Attention Usage

8.1. Paper

"ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks"

8.2. Overview

8.3. Usage Code

from model.attention.ECAAttention import ECAAttention
import torch

input=torch.randn(50,512,7,7)
eca = ECAAttention(kernel_size=3)
output=eca(input)
print(output.shape)

9. DANet Attention Usage

9.1. Paper

"Dual Attention Network for Scene Segmentation"

9.2. Overview

9.3. Usage Code

from model.attention.DANet import DAModule
import torch

input=torch.randn(50,512,7,7)
danet=DAModule(d_model=512,kernel_size=3,H=7,W=7)
print(danet(input).shape)

10. Pyramid Split Attention Usage

10.1. Paper

"EPSANet: An Efficient Pyramid Split Attention Block on Convolutional Neural Network"

10.2. Overview

10.3. Usage Code

from model.attention.PSA import PSA
import torch

input=torch.randn(50,512,7,7)
psa = PSA(channel=512,reduction=8)
output=psa(input)
print(output.shape)

11. Efficient Multi-Head Self-Attention Usage

11.1. Paper

"ResT: An Efficient Transformer for Visual Recognition"

11.2. Overview

11.3. Usage Code

from model.attention.EMSA import EMSA
import torch
from torch import nn
from torch.nn import functional as F

input=torch.randn(50,64,512)
emsa = EMSA(d_model=512, d_k=512, d_v=512, h=8,H=8,W=8,ratio=2,apply_transform=True)
output=emsa(input,input,input)
print(output.shape)
    

12. Shuffle Attention Usage

12.1. Paper

"SA-NET: SHUFFLE ATTENTION FOR DEEP CONVOLUTIONAL NEURAL NETWORKS"

12.2. Overview

12.3. Usage Code

from model.attention.ShuffleAttention import ShuffleAttention
import torch
from torch import nn
from torch.nn import functional as F


input=torch.randn(50,512,7,7)
se = ShuffleAttention(channel=512,G=8)
output=se(input)
print(output.shape)

    

13. MUSE Attention Usage

13.1. Paper

"MUSE: Parallel Multi-Scale Attention for Sequence to Sequence Learning"

13.2. Overview

13.3. Usage Code

from model.attention.MUSEAttention import MUSEAttention
import torch
from torch import nn
from torch.nn import functional as F


input=torch.randn(50,49,512)
sa = MUSEAttention(d_model=512, d_k=512, d_v=512, h=8)
output=sa(input,input,input)
print(output.shape)

14. SGE Attention Usage

14.1. Paper

Spatial Group-wise Enhance: Improving Semantic Feature Learning in Convolutional Networks

14.2. Overview

14.3. Usage Code

from model.attention.SGE import SpatialGroupEnhance
import torch
from torch import nn
from torch.nn import functional as F

input=torch.randn(50,512,7,7)
sge = SpatialGroupEnhance(groups=8)
output=sge(input)
print(output.shape)

15. A2 Attention Usage

15.1. Paper

A2-Nets: Double Attention Networks

15.2. Overview

15.3. Usage Code

from model.attention.A2Atttention import DoubleAttention
import torch
from torch import nn
from torch.nn import functional as F

input=torch.randn(50,512,7,7)
a2 = DoubleAttention(512,128,128,True)
output=a2(input)
print(output.shape)

16. AFT Attention Usage

16.1. Paper

An Attention Free Transformer

16.2. Overview

16.3. Usage Code

from model.attention.AFT import AFT_FULL
import torch
from torch import nn
from torch.nn import functional as F

input=torch.randn(50,49,512)
aft_full = AFT_FULL(d_model=512, n=49)
output=aft_full(input)
print(output.shape)

17. Outlook Attention Usage

17.1. Paper

VOLO: Vision Outlooker for Visual Recognition"

17.2. Overview

17.3. Usage Code

from model.attention.OutlookAttention import OutlookAttention
import torch
from torch import nn
from torch.nn import functional as F

input=torch.randn(50,28,28,512)
outlook = OutlookAttention(dim=512)
output=outlook(input)
print(output.shape)

18. ViP Attention Usage

18.1. Paper

Vision Permutator: A Permutable MLP-Like Architecture for Visual Recognition"

18.2. Overview

18.3. Usage Code

from model.attention.ViP import WeightedPermuteMLP
import torch
from torch import nn
from torch.nn import functional as F

input=torch.randn(64,8,8,512)
seg_dim=8
vip=WeightedPermuteMLP(512,seg_dim)
out=vip(input)
print(out.shape)

19. CoAtNet Attention Usage

19.1. Paper

CoAtNet: Marrying Convolution and Attention for All Data Sizes"

19.2. Overview

None

19.3. Usage Code

from model.attention.CoAtNet import CoAtNet
import torch
from torch import nn
from torch.nn import functional as F

input=torch.randn(1,3,224,224)
mbconv=CoAtNet(in_ch=3,image_size=224)
out=mbconv(input)
print(out.shape)

20. HaloNet Attention Usage

20.1. Paper

Scaling Local Self-Attention for Parameter Efficient Visual Backbones"

20.2. Overview

20.3. Usage Code

from model.attention.HaloAttention import HaloAttention
import torch
from torch import nn
from torch.nn import functional as F

input=torch.randn(1,512,8,8)
halo = HaloAttention(dim=512,
    block_size=2,
    halo_size=1,)
output=halo(input)
print(output.shape)

21. Polarized Self-Attention Usage

21.1. Paper

Polarized Self-Attention: Towards High-quality Pixel-wise Regression"

21.2. Overview

21.3. Usage Code

from model.attention.PolarizedSelfAttention import ParallelPolarizedSelfAttention,SequentialPolarizedSelfAttention
import torch
from torch import nn
from torch.nn import functional as F

input=torch.randn(1,512,7,7)
psa = SequentialPolarizedSelfAttention(channel=512)
output=psa(input)
print(output.shape)

22. CoTAttention Usage

22.1. Paper

Contextual Transformer Networks for Visual Recognition---arXiv 2021.07.26

22.2. Overview

22.3. Usage Code

from model.attention.CoTAttention import CoTAttention
import torch
from torch import nn
from torch.nn import functional as F

input=torch.randn(50,512,7,7)
cot = CoTAttention(dim=512,kernel_size=3)
output=cot(input)
print(output.shape)


23. Residual Attention Usage

23.1. Paper

Residual Attention: A Simple but Effective Method for Multi-Label Recognition---ICCV2021

23.2. Overview

23.3. Usage Code

from model.attention.ResidualAttention import ResidualAttention
import torch
from torch import nn
from torch.nn import functional as F

input=torch.randn(50,512,7,7)
resatt = ResidualAttention(channel=512,num_class=1000,la=0.2)
output=resatt(input)
print(output.shape)


24. S2 Attention Usage

24.1. Paper

S²-MLPv2: Improved Spatial-Shift MLP Architecture for Vision---arXiv 2021.08.02

24.2. Overview

24.3. Usage Code

from model.attention.S2Attention import S2Attention
import torch
from torch import nn
from torch.nn import functional as F

input=torch.randn(50,512,7,7)
s2att = S2Attention(channels=512)
output=s2att(input)
print(output.shape)

25. GFNet Attention Usage

25.1. Paper

Global Filter Networks for Image Classification---arXiv 2021.07.01

25.2. Overview

25.3. Usage Code - Implemented by Wenliang Zhao (Author)

from model.attention.gfnet import GFNet
import torch
from torch import nn
from torch.nn import functional as F

x = torch.randn(1, 3, 224, 224)
gfnet = GFNet(embed_dim=384, img_size=224, patch_size=16, num_classes=1000)
out = gfnet(x)
print(out.shape)

26. TripletAttention Usage

26.1. Paper

Rotate to Attend: Convolutional Triplet Attention Module---CVPR 2021

26.2. Overview

26.3. Usage Code - Implemented by digantamisra98

from model.attention.TripletAttention import TripletAttention
import torch
from torch import nn
from torch.nn import functional as F
input=torch.randn(50,512,7,7)
triplet = TripletAttention()
output=triplet(input)
print(output.shape)

27. Coordinate Attention Usage

27.1. Paper

Coordinate Attention for Efficient Mobile Network Design---CVPR 2021

27.2. Overview

27.3. Usage Code - Implemented by Andrew-Qibin

from model.attention.CoordAttention import CoordAtt
import torch
from torch import nn
from torch.nn import functional as F

inp=torch.rand([2, 96, 56, 56])
inp_dim, oup_dim = 96, 96
reduction=32

coord_attention = CoordAtt(inp_dim, oup_dim, reduction=reduction)
output=coord_attention(inp)
print(output.shape)

28. MobileViT Attention Usage

28.1. Paper

MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer---ArXiv 2021.10.05

28.2. Overview

28.3. Usage Code

from model.attention.MobileViTAttention import MobileViTAttention
import torch
from torch import nn
from torch.nn import functional as F

if __name__ == '__main__':
    m=MobileViTAttention()
    input=torch.randn(1,3,49,49)
    output=m(input)
    print(output.shape)  #output:(1,3,49,49)
    

29. ParNet Attention Usage

29.1. Paper

Non-deep Networks---ArXiv 2021.10.20

29.2. Overview

29.3. Usage Code

from model.attention.ParNetAttention import *
import torch
from torch import nn
from torch.nn import functional as F

if __name__ == '__main__':
    input=torch.randn(50,512,7,7)
    pna = ParNetAttention(channel=512)
    output=pna(input)
    print(output.shape) #50,512,7,7
    

30. UFO Attention Usage

30.1. Paper

UFO-ViT: High Performance Linear Vision Transformer without Softmax---ArXiv 2021.09.29

30.2. Overview

30.3. Usage Code

from model.attention.UFOAttention import *
import torch
from torch import nn
from torch.nn import functional as F

if __name__ == '__main__':
    input=torch.randn(50,49,512)
    ufo = UFOAttention(d_model=512, d_k=512, d_v=512, h=8)
    output=ufo(input,input,input)
    print(output.shape) #[50, 49, 512]
    

31. ACmix Attention Usage

31.1. Paper

On the Integration of Self-Attention and Convolution

31.2. Usage Code

from model.attention.ACmix import ACmix
import torch

if __name__ == '__main__':
    input=torch.randn(50,256,7,7)
    acmix = ACmix(in_planes=256, out_planes=256)
    output=acmix(input)
    print(output.shape)
    

32. MobileViTv2 Attention Usage

32.1. Paper

Separable Self-attention for Mobile Vision Transformers---ArXiv 2022.06.06

32.2. Overview

32.3. Usage Code

from model.attention.MobileViTv2Attention import MobileViTv2Attention
import torch
from torch import nn
from torch.nn import functional as F

if __name__ == '__main__':
    input=torch.randn(50,49,512)
    sa = MobileViTv2Attention(d_model=512)
    output=sa(input)
    print(output.shape)
    

33. DAT Attention Usage

33.1. Paper

Vision Transformer with Deformable Attention---CVPR2022

33.2. Usage Code

from model.attention.DAT import DAT
import torch

if __name__ == '__main__':
    input=torch.randn(1,3,224,224)
    model = DAT(
        img_size=224,
        patch_size=4,
        num_classes=1000,
        expansion=4,
        dim_stem=96,
        dims=[96, 192, 384, 768],
        depths=[2, 2, 6, 2],
        stage_spec=[['L', 'S'], ['L', 'S'], ['L', 'D', 'L', 'D', 'L', 'D'], ['L', 'D']],
        heads=[3, 6, 12, 24],
        window_sizes=[7, 7, 7, 7] ,
        groups=[-1, -1, 3, 6],
        use_pes=[False, False, True, True],
        dwc_pes=[False, False, False, False],
        strides=[-1, -1, 1, 1],
        sr_ratios=[-1, -1, -1, -1],
        offset_range_factor=[-1, -1, 2, 2],
        no_offs=[False, False, False, False],
        fixed_pes=[False, False, False, False],
        use_dwc_mlps=[False, False, False, False],
        use_conv_patches=False,
        drop_rate=0.0,
        attn_drop_rate=0.0,
        drop_path_rate=0.2,
    )
    output=model(input)
    print(output[0].shape)
    

34. CrossFormer Attention Usage

34.1. Paper

CROSSFORMER: A VERSATILE VISION TRANSFORMER HINGING ON CROSS-SCALE ATTENTION---ICLR 2022

34.2. Usage Code

from model.attention.Crossformer import CrossFormer
import torch

if __name__ == '__main__':
    input=torch.randn(1,3,224,224)
    model = CrossFormer(img_size=224,
        patch_size=[4, 8, 16, 32],
        in_chans= 3,
        num_classes=1000,
        embed_dim=48,
        depths=[2, 2, 6, 2],
        num_heads=[3, 6, 12, 24],
        group_size=[7, 7, 7, 7],
        mlp_ratio=4.,
        qkv_bias=True,
        qk_scale=None,
        drop_rate=0.0,
        drop_path_rate=0.1,
        ape=False,
        patch_norm=True,
        use_checkpoint=False,
        merge_size=[[2, 4], [2,4], [2, 4]]
    )
    output=model(input)
    print(output.shape)
    

35. MOATransformer Attention Usage

35.1. Paper

Aggregating Global Features into Local Vision Transformer

35.2. Usage Code

from model.attention.MOATransformer import MOATransformer
import torch

if __name__ == '__main__':
    input=torch.randn(1,3,224,224)
    model = MOATransformer(
        img_size=224,
        patch_size=4,
        in_chans=3,
        num_classes=1000,
        embed_dim=96,
        depths=[2, 2, 6],
        num_heads=[3, 6, 12],
        window_size=14,
        mlp_ratio=4.,
        qkv_bias=True,
        qk_scale=None,
        drop_rate=0.0,
        drop_path_rate=0.1,
        ape=False,
        patch_norm=True,
        use_checkpoint=False
    )
    output=model(input)
    print(output.shape)
    

36. CrissCrossAttention Attention Usage

36.1. Paper

CCNet: Criss-Cross Attention for Semantic Segmentation

36.2. Usage Code

from model.attention.CrissCrossAttention import CrissCrossAttention
import torch

if __name__ == '__main__':
    input=torch.randn(3, 64, 7, 7)
    model = CrissCrossAttention(64)
    outputs = model(input)
    print(outputs.shape)
    

37. Axial_attention Attention Usage

37.1. Paper

Axial Attention in Multidimensional Transformers

37.2. Usage Code

from model.attention.Axial_attention import AxialImageTransformer
import torch

if __name__ == '__main__':
    input=torch.randn(3, 128, 7, 7)
    model = AxialImageTransformer(
        dim = 128,
        depth = 12,
        reversible = True
    )
    outputs = model(input)
    print(outputs.shape)
    

Backbone Series


1. ResNet Usage

1.1. Paper

"Deep Residual Learning for Image Recognition---CVPR2016 Best Paper"

1.2. Overview

1.3. Usage Code

from model.backbone.resnet import ResNet50,ResNet101,ResNet152
import torch
if __name__ == '__main__':
    input=torch.randn(50,3,224,224)
    resnet50=ResNet50(1000)
    # resnet101=ResNet101(1000)
    # resnet152=ResNet152(1000)
    out=resnet50(input)
    print(out.shape)

2. ResNeXt Usage

2.1. Paper

"Aggregated Residual Transformations for Deep Neural Networks---CVPR2017"

2.2. Overview

2.3. Usage Code

from model.backbone.resnext import ResNeXt50,ResNeXt101,ResNeXt152
import torch

if __name__ == '__main__':
    input=torch.randn(50,3,224,224)
    resnext50=ResNeXt50(1000)
    # resnext101=ResNeXt101(1000)
    # resnext152=ResNeXt152(1000)
    out=resnext50(input)
    print(out.shape)

3. MobileViT Usage

3.1. Paper

MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer---ArXiv 2020.10.05

3.2. Overview

3.3. Usage Code

from model.backbone.MobileViT import *
import torch
from torch import nn
from torch.nn import functional as F

if __name__ == '__main__':
    input=torch.randn(1,3,224,224)

    ### mobilevit_xxs
    mvit_xxs=mobilevit_xxs()
    out=mvit_xxs(input)
    print(out.shape)

    ### mobilevit_xs
    mvit_xs=mobilevit_xs()
    out=mvit_xs(input)
    print(out.shape)


    ### mobilevit_s
    mvit_s=mobilevit_s()
    out=mvit_s(input)
    print(out.shape)

4. ConvMixer Usage

4.1. Paper

Patches Are All You Need?---ICLR2022 (Under Review)

4.2. Overview

4.3. Usage Code

from model.backbone.ConvMixer import *
import torch
from torch import nn
from torch.nn import functional as F

if __name__ == '__main__':
    x=torch.randn(1,3,224,224)
    convmixer=ConvMixer(dim=512,depth=12)
    out=convmixer(x)
    print(out.shape)  #[1, 1000]

5. ShuffleTransformer Usage

5.1. Paper

Shuffle Transformer: Rethinking Spatial Shuffle for Vision Transformer

5.2. Usage Code

from model.backbone.ShuffleTransformer import ShuffleTransformer
import torch
from torch import nn
from torch.nn import functional as F

if __name__ == '__main__':
    input=torch.randn(1,3,224,224)
    sft = ShuffleTransformer()
    output=sft(input)
    print(output.shape)

6. ConTNet Usage

6.1. Paper

ConTNet: Why not use convolution and transformer at the same time?

6.2. Usage Code

from model.backbone.ConTNet import ConTNet
import torch
from torch import nn
from torch.nn import functional as F

if __name__ == "__main__":
    model = build_model(use_avgdown=True, relative=True, qkv_bias=True, pre_norm=True)
    input = torch.randn(1, 3, 224, 224)
    out = model(input)
    print(out.shape)

7 HATNet Usage

7.1. Paper

Vision Transformers with Hierarchical Attention

7.2. Usage Code

from model.backbone.HATNet import HATNet
import torch
from torch import nn
from torch.nn import functional as F

if __name__ == '__main__':
    input=torch.randn(1,3,224,224)
    hat = HATNet(dims=[48, 96, 240, 384], head_dim=48, expansions=[8, 8, 4, 4],
        grid_sizes=[8, 7, 7, 1], ds_ratios=[8, 4, 2, 1], depths=[2, 2, 6, 3])
    output=hat(input)
    print(output.shape)

8 CoaT Usage

8.1. Paper

Co-Scale Conv-Attentional Image Transformers

8.2. Usage Code

from model.backbone.CoaT import CoaT
import torch
from torch import nn

if __name__ == '__main__':
    input=torch.randn(1,3,224,224)
    model = CoaT(patch_size=4, embed_dims=[152, 152, 152, 152], serial_depths=[2, 2, 2, 2], parallel_depth=6, num_heads=8, mlp_ratios=[4, 4, 4, 4])
    output=model(input)
    print(output.shape) # torch.Size([1, 1000])

9 PVT Usage

9.1. Paper

PVT v2: Improved Baselines with Pyramid Vision Transformer

9.2. Usage Code

from model.backbone.PVT import PyramidVisionTransformer
import torch
from torch import nn

if __name__ == '__main__':
    input=torch.randn(1,3,224,224)
    model = PyramidVisionTransformer(
        patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4], qkv_bias=True,
        norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[2, 2, 2, 2], sr_ratios=[8, 4, 2, 1])
    output=model(input)
    print(output.shape)

10 CPVT Usage

10.1. Paper

Conditional Positional Encodings for Vision Transformers

10.2. Usage Code

from model.backbone.CPVT import CPVTV2
import torch
from torch import nn

if __name__ == '__main__':
    input=torch.randn(1,3,224,224)
    model = CPVTV2(
        patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4], qkv_bias=True,
        norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1])
    output=model(input)
    print(output.shape)

11 PIT Usage

11.1. Paper

Rethinking Spatial Dimensions of Vision Transformers

11.2. Usage Code

from model.backbone.PIT import PoolingTransformer
import torch
from torch import nn

if __name__ == '__main__':
    input=torch.randn(1,3,224,224)
    model = PoolingTransformer(
        image_size=224,
        patch_size=14,
        stride=7,
        base_dims=[64, 64, 64],
        depth=[3, 6, 4],
        heads=[4, 8, 16],
        mlp_ratio=4
    )
    output=model(input)
    print(output.shape)

12 CrossViT Usage

12.1. Paper

CrossViT: Cross-Attention Multi-Scale Vision Transformer for Image Classification

12.2. Usage Code

from model.backbone.CrossViT import VisionTransformer
import torch
from torch import nn

if __name__ == "__main__":
    input=torch.randn(1,3,224,224)
    model = VisionTransformer(
        img_size=[240, 224],
        patch_size=[12, 16], 
        embed_dim=[192, 384], 
        depth=[[1, 4, 0], [1, 4, 0], [1, 4, 0]],
        num_heads=[6, 6], 
        mlp_ratio=[4, 4, 1], 
        qkv_bias=True,
        norm_layer=partial(nn.LayerNorm, eps=1e-6)
    )
    output=model(input)
    print(output.shape)

13 TnT Usage

13.1. Paper

Transformer in Transformer

13.2. Usage Code

from model.backbone.TnT import TNT
import torch
from torch import nn

if __name__ == '__main__':
    input=torch.randn(1,3,224,224)
    model = TNT(
        img_size=224, 
        patch_size=16, 
        outer_dim=384, 
        inner_dim=24, 
        depth=12,
        outer_num_heads=6, 
        inner_num_heads=4, 
        qkv_bias=False,
        inner_stride=4)
    output=model(input)
    print(output.shape)

14 DViT Usage

14.1. Paper

DeepViT: Towards Deeper Vision Transformer

14.2. Usage Code

from model.backbone.DViT import DeepVisionTransformer
import torch
from torch import nn

if __name__ == '__main__':
    input=torch.randn(1,3,224,224)
    model = DeepVisionTransformer(
        patch_size=16, embed_dim=384, 
        depth=[False] * 16, 
        apply_transform=[False] * 0 + [True] * 32, 
        num_heads=12, 
        mlp_ratio=3, 
        qkv_bias=True,
        norm_layer=partial(nn.LayerNorm, eps=1e-6),
        )
    output=model(input)
    print(output.shape)

15 CeiT Usage

15.1. Paper

Incorporating Convolution Designs into Visual Transformers

15.2. Usage Code

from model.backbone.CeiT import CeIT
import torch
from torch import nn

if __name__ == '__main__':
    input=torch.randn(1,3,224,224)
    model = CeIT(
        hybrid_backbone=Image2Tokens(),
        patch_size=4, 
        embed_dim=192, 
        depth=12, 
        num_heads=3, 
        mlp_ratio=4, 
        qkv_bias=True,
        norm_layer=partial(nn.LayerNorm, eps=1e-6)
        )
    output=model(input)
    print(output.shape)

16 ConViT Usage

16.1. Paper

ConViT: Improving Vision Transformers with Soft Convolutional Inductive Biases

16.2. Usage Code

from model.backbone.ConViT import VisionTransformer
import torch
from torch import nn

if __name__ == '__main__':
    input=torch.randn(1,3,224,224)
    model = VisionTransformer(
        num_heads=16,
        norm_layer=partial(nn.LayerNorm, eps=1e-6)
        )
    output=model(input)
    print(output.shape)

17 CaiT Usage

17.1. Paper

Going deeper with Image Transformers

17.2. Usage Code

from model.backbone.CaiT import CaiT
import torch
from torch import nn

if __name__ == '__main__':
    input=torch.randn(1,3,224,224)
    model = CaiT(
        img_size= 224,
        patch_size=16, 
        embed_dim=192, 
        depth=24, 
        num_heads=4, 
        mlp_ratio=4, 
        qkv_bias=True,
        norm_layer=partial(nn.LayerNorm, eps=1e-6),
        init_scale=1e-5,
        depth_token_only=2
        )
    output=model(input)
    print(output.shape)

18 PatchConvnet Usage

18.1. Paper

Augmenting Convolutional networks with attention-based aggregation

18.2. Usage Code

from model.backbone.PatchConvnet import PatchConvnet
import torch
from torch import nn

if __name__ == '__main__':
    input=torch.randn(1,3,224,224)
    model = PatchConvnet(
        patch_size=16,
        embed_dim=384,
        depth=60,
        num_heads=1,
        qkv_bias=True,
        norm_layer=partial(nn.LayerNorm, eps=1e-6),
        Patch_layer=ConvStem,
        Attention_block=Conv_blocks_se,
        depth_token_only=1,
        mlp_ratio_clstk=3.0,
    )
    output=model(input)
    print(output.shape)

19 DeiT Usage

19.1. Paper

Training data-efficient image transformers & distillation through attention

19.2. Usage Code

from model.backbone.DeiT import DistilledVisionTransformer
import torch
from torch import nn

if __name__ == '__main__':
    input=torch.randn(1,3,224,224)
    model = DistilledVisionTransformer(
        patch_size=16, 
        embed_dim=384, 
        depth=12, 
        num_heads=6, 
        mlp_ratio=4, 
        qkv_bias=True,
        norm_layer=partial(nn.LayerNorm, eps=1e-6)
        )
    output=model(input)
    print(output[0].shape)

20 LeViT Usage

20.1. Paper

LeViT: a Vision Transformer in ConvNet’s Clothing for Faster Inference

20.2. Usage Code

from model.backbone.LeViT import *
import torch
from torch import nn

if __name__ == '__main__':
    for name in specification:
        input=torch.randn(1,3,224,224)
        model = globals()[name](fuse=True, pretrained=False)
        model.eval()
        output = model(input)
        print(output.shape)

21 VOLO Usage

21.1. Paper

VOLO: Vision Outlooker for Visual Recognition

21.2. Usage Code

from model.backbone.VOLO import VOLO
import torch
from torch import nn

if __name__ == '__main__':
    input=torch.randn(1,3,224,224)
    model = VOLO([4, 4, 8, 2],
                 embed_dims=[192, 384, 384, 384],
                 num_heads=[6, 12, 12, 12],
                 mlp_ratios=[3, 3, 3, 3],
                 downsamples=[True, False, False, False],
                 outlook_attention=[True, False, False, False ],
                 post_layers=['ca', 'ca'],
                 )
    output=model(input)
    print(output[0].shape)

22 Container Usage

22.1. Paper

Container: Context Aggregation Network

22.2. Usage Code

from model.backbone.Container import VisionTransformer
import torch
from torch import nn

if __name__ == '__main__':
    input=torch.randn(1,3,224,224)
    model = VisionTransformer(
        img_size=[224, 56, 28, 14], 
        patch_size=[4, 2, 2, 2], 
        embed_dim=[64, 128, 320, 512], 
        depth=[3, 4, 8, 3], 
        num_heads=16, 
        mlp_ratio=[8, 8, 4, 4], 
        qkv_bias=True,
        norm_layer=partial(nn.LayerNorm, eps=1e-6))
    output=model(input)
    print(output.shape)

23 CMT Usage

23.1. Paper

CMT: Convolutional Neural Networks Meet Vision Transformers

23.2. Usage Code

from model.backbone.CMT import CMT_Tiny
import torch
from torch import nn

if __name__ == '__main__':
    input=torch.randn(1,3,224,224)
    model = CMT_Tiny()
    output=model(input)
    print(output[0].shape)

24 EfficientFormer Usage

24.1. Paper

EfficientFormer: Vision Transformers at MobileNet Speed

24.2. Usage Code

from model.backbone.EfficientFormer import EfficientFormer
import torch
from torch import nn

if __name__ == '__main__':
    input=torch.randn(1,3,224,224)
    model = EfficientFormer(
        layers=EfficientFormer_depth['l1'],
        embed_dims=EfficientFormer_width['l1'],
        downsamples=[True, True, True, True],
        vit_num=1,
    )
    output=model(input)
    print(output[0].shape)

MLP Series

1. RepMLP Usage

1.1. Paper

"RepMLP: Re-parameterizing Convolutions into Fully-connected Layers for Image Recognition"

1.2. Overview

1.3. Usage Code

from model.mlp.repmlp import RepMLP
import torch
from torch import nn

N=4 #batch size
C=512 #input dim
O=1024 #output dim
H=14 #image height
W=14 #image width
h=7 #patch height
w=7 #patch width
fc1_fc2_reduction=1 #reduction ratio
fc3_groups=8 # groups
repconv_kernels=[1,3,5,7] #kernel list
repmlp=RepMLP(C,O,H,W,h,w,fc1_fc2_reduction,fc3_groups,repconv_kernels=repconv_kernels)
x=torch.randn(N,C,H,W)
repmlp.eval()
for module in repmlp.modules():
    if isinstance(module, nn.BatchNorm2d) or isinstance(module, nn.BatchNorm1d):
        nn.init.uniform_(module.running_mean, 0, 0.1)
        nn.init.uniform_(module.running_var, 0, 0.1)
        nn.init.uniform_(module.weight, 0, 0.1)
        nn.init.uniform_(module.bias, 0, 0.1)

#training result
out=repmlp(x)
#inference result
repmlp.switch_to_deploy()
deployout = repmlp(x)

print(((deployout-out)**2).sum())

2. MLP-Mixer Usage

2.1. Paper

"MLP-Mixer: An all-MLP Architecture for Vision"

2.2. Overview

2.3. Usage Code

from model.mlp.mlp_mixer import MlpMixer
import torch
mlp_mixer=MlpMixer(num_classes=1000,num_blocks=10,patch_size=10,tokens_hidden_dim=32,channels_hidden_dim=1024,tokens_mlp_dim=16,channels_mlp_dim=1024)
input=torch.randn(50,3,40,40)
output=mlp_mixer(input)
print(output.shape)

3. ResMLP Usage

3.1. Paper

"ResMLP: Feedforward networks for image classification with data-efficient training"

3.2. Overview

3.3. Usage Code

from model.mlp.resmlp import ResMLP
import torch

input=torch.randn(50,3,14,14)
resmlp=ResMLP(dim=128,image_size=14,patch_size=7,class_num=1000)
out=resmlp(input)
print(out.shape) #the last dimention is class_num

4. gMLP Usage

4.1. Paper

"Pay Attention to MLPs"

4.2. Overview

4.3. Usage Code

from model.mlp.g_mlp import gMLP
import torch

num_tokens=10000
bs=50
len_sen=49
num_layers=6
input=torch.randint(num_tokens,(bs,len_sen)) #bs,len_sen
gmlp = gMLP(num_tokens=num_tokens,len_sen=len_sen,dim=512,d_ff=1024)
output=gmlp(input)
print(output.shape)

5. sMLP Usage

5.1. Paper

"Sparse MLP for Image Recognition: Is Self-Attention Really Necessary?"

5.2. Overview

5.3. Usage Code

from model.mlp.sMLP_block import sMLPBlock
import torch
from torch import nn
from torch.nn import functional as F

if __name__ == '__main__':
    input=torch.randn(50,3,224,224)
    smlp=sMLPBlock(h=224,w=224)
    out=smlp(input)
    print(out.shape)

6. vip-mlp Usage

6.1. Paper

"Vision Permutator: A Permutable MLP-Like Architecture for Visual Recognition"

6.2. Usage Code

from model.mlp.vip-mlp import VisionPermutator
import torch
from torch import nn
from torch.nn import functional as F

if __name__ == '__main__':
    input=torch.randn(1,3,224,224)
    model = VisionPermutator(
        layers=[4, 3, 8, 3], 
        embed_dims=[384, 384, 384, 384], 
        patch_size=14, 
        transitions=[False, False, False, False],
        segment_dim=[16, 16, 16, 16], 
        mlp_ratios=[3, 3, 3, 3], 
        mlp_fn=WeightedPermuteMLP
    )
    output=model(input)
    print(output.shape)

Re-Parameter Series


1. RepVGG Usage

1.1. Paper

"RepVGG: Making VGG-style ConvNets Great Again"

1.2. Overview

1.3. Usage Code

from model.rep.repvgg import RepBlock
import torch


input=torch.randn(50,512,49,49)
repblock=RepBlock(512,512)
repblock.eval()
out=repblock(input)
repblock._switch_to_deploy()
out2=repblock(input)
print('difference between vgg and repvgg')
print(((out2-out)**2).sum())

2. ACNet Usage

2.1. Paper

"ACNet: Strengthening the Kernel Skeletons for Powerful CNN via Asymmetric Convolution Blocks"

2.2. Overview

2.3. Usage Code

from model.rep.acnet import ACNet
import torch
from torch import nn

input=torch.randn(50,512,49,49)
acnet=ACNet(512,512)
acnet.eval()
out=acnet(input)
acnet._switch_to_deploy()
out2=acnet(input)
print('difference:')
print(((out2-out)**2).sum())

2. Diverse Branch Block Usage

2.1. Paper

"Diverse Branch Block: Building a Convolution as an Inception-like Unit"

2.2. Overview

2.3. Usage Code

2.3.1 Transform I
from model.rep.ddb import transI_conv_bn
import torch
from torch import nn
from torch.nn import functional as F

input=torch.randn(1,64,7,7)
#conv+bn
conv1=nn.Conv2d(64,64,3,padding=1)
bn1=nn.BatchNorm2d(64)
bn1.eval()
out1=bn1(conv1(input))

#conv_fuse
conv_fuse=nn.Conv2d(64,64,3,padding=1)
conv_fuse.weight.data,conv_fuse.bias.data=transI_conv_bn(conv1,bn1)
out2=conv_fuse(input)

print("difference:",((out2-out1)**2).sum().item())
2.3.2 Transform II
from model.rep.ddb import transII_conv_branch
import torch
from torch import nn
from torch.nn import functional as F

input=torch.randn(1,64,7,7)

#conv+conv
conv1=nn.Conv2d(64,64,3,padding=1)
conv2=nn.Conv2d(64,64,3,padding=1)
out1=conv1(input)+conv2(input)

#conv_fuse
conv_fuse=nn.Conv2d(64,64,3,padding=1)
conv_fuse.weight.data,conv_fuse.bias.data=transII_conv_branch(conv1,conv2)
out2=conv_fuse(input)

print("difference:",((out2-out1)**2).sum().item())
2.3.3 Transform III
from model.rep.ddb import transIII_conv_sequential
import torch
from torch import nn
from torch.nn import functional as F

input=torch.randn(1,64,7,7)

#conv+conv
conv1=nn.Conv2d(64,64,1,padding=0,bias=False)
conv2=nn.Conv2d(64,64,3,padding=1,bias=False)
out1=conv2(conv1(input))


#conv_fuse
conv_fuse=nn.Conv2d(64,64,3,padding=1,bias=False)
conv_fuse.weight.data=transIII_conv_sequential(conv1,conv2)
out2=conv_fuse(input)

print("difference:",((out2-out1)**2).sum().item())
2.3.4 Transform IV
from model.rep.ddb import transIV_conv_concat
import torch
from torch import nn
from torch.nn import functional as F

input=torch.randn(1,64,7,7)

#conv+conv
conv1=nn.Conv2d(64,32,3,padding=1)
conv2=nn.Conv2d(64,32,3,padding=1)
out1=torch.cat([conv1(input),conv2(input)],dim=1)

#conv_fuse
conv_fuse=nn.Conv2d(64,64,3,padding=1)
conv_fuse.weight.data,conv_fuse.bias.data=transIV_conv_concat(conv1,conv2)
out2=conv_fuse(input)

print("difference:",((out2-out1)**2).sum().item())
2.3.5 Transform V
from model.rep.ddb import transV_avg
import torch
from torch import nn
from torch.nn import functional as F

input=torch.randn(1,64,7,7)

avg=nn.AvgPool2d(kernel_size=3,stride=1)
out1=avg(input)

conv=transV_avg(64,3)
out2=conv(input)

print("difference:",((out2-out1)**2).sum().item())
2.3.6 Transform VI
from model.rep.ddb import transVI_conv_scale
import torch
from torch import nn
from torch.nn import functional as F

input=torch.randn(1,64,7,7)

#conv+conv
conv1x1=nn.Conv2d(64,64,1)
conv1x3=nn.Conv2d(64,64,(1,3),padding=(0,1))
conv3x1=nn.Conv2d(64,64,(3,1),padding=(1,0))
out1=conv1x1(input)+conv1x3(input)+conv3x1(input)

#conv_fuse
conv_fuse=nn.Conv2d(64,64,3,padding=1)
conv_fuse.weight.data,conv_fuse.bias.data=transVI_conv_scale(conv1x1,conv1x3,conv3x1)
out2=conv_fuse(input)

print("difference:",((out2-out1)**2).sum().item())

Convolution Series


1. Depthwise Separable Convolution Usage

1.1. Paper

"MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications"

1.2. Overview

1.3. Usage Code

from model.conv.DepthwiseSeparableConvolution import DepthwiseSeparableConvolution
import torch
from torch import nn
from torch.nn import functional as F

input=torch.randn(1,3,224,224)
dsconv=DepthwiseSeparableConvolution(3,64)
out=dsconv(input)
print(out.shape)

2. MBConv Usage

2.1. Paper

"Efficientnet: Rethinking model scaling for convolutional neural networks"

2.2. Overview

2.3. Usage Code

from model.conv.MBConv import MBConvBlock
import torch
from torch import nn
from torch.nn import functional as F

input=torch.randn(1,3,224,224)
mbconv=MBConvBlock(ksize=3,input_filters=3,output_filters=512,image_size=224)
out=mbconv(input)
print(out.shape)

3. Involution Usage

3.1. Paper

"Involution: Inverting the Inherence of Convolution for Visual Recognition"

3.2. Overview

3.3. Usage Code

from model.conv.Involution import Involution
import torch
from torch import nn
from torch.nn import functional as F

input=torch.randn(1,4,64,64)
involution=Involution(kernel_size=3,in_channel=4,stride=2)
out=involution(input)
print(out.shape)

4. DynamicConv Usage

4.1. Paper

"Dynamic Convolution: Attention over Convolution Kernels"

4.2. Overview

4.3. Usage Code

from model.conv.DynamicConv import *
import torch
from torch import nn
from torch.nn import functional as F

if __name__ == '__main__':
    input=torch.randn(2,32,64,64)
    m=DynamicConv(in_planes=32,out_planes=64,kernel_size=3,stride=1,padding=1,bias=False)
    out=m(input)
    print(out.shape) # 2,32,64,64

5. CondConv Usage

5.1. Paper

"CondConv: Conditionally Parameterized Convolutions for Efficient Inference"

5.2. Overview

5.3. Usage Code

from model.conv.CondConv import *
import torch
from torch import nn
from torch.nn import functional as F

if __name__ == '__main__':
    input=torch.randn(2,32,64,64)
    m=CondConv(in_planes=32,out_planes=64,kernel_size=3,stride=1,padding=1,bias=False)
    out=m(input)
    print(out.shape)