|
556 | 556 | "So it looks like Montrealers are commuter cyclists -- they bike much more during the week. Neat!"
|
557 | 557 | ]
|
558 | 558 | },
|
| 559 | + { |
| 560 | + "cell_type": "markdown", |
| 561 | + "metadata": {}, |
| 562 | + "source": [ |
| 563 | + "# 4.3 Putting it together" |
| 564 | + ] |
| 565 | + }, |
| 566 | + { |
| 567 | + "cell_type": "markdown", |
| 568 | + "metadata": {}, |
| 569 | + "source": [ |
| 570 | + "Let's put all that together, to prove how easy it is. 6 lines of magical pandas!\n", |
| 571 | + "\n", |
| 572 | + "If you want to play around, try changing `sum` to `max`, `np.median`, or any other function you like." |
| 573 | + ] |
| 574 | + }, |
| 575 | + { |
| 576 | + "cell_type": "code", |
| 577 | + "collapsed": false, |
| 578 | + "input": [ |
| 579 | + "bikes = pd.read_csv('../data/bikes.csv', \n", |
| 580 | + " sep=';', encoding='latin1', \n", |
| 581 | + " parse_dates=['Date'], dayfirst=True, \n", |
| 582 | + " index_col='Date')\n", |
| 583 | + "# Add the weekday column\n", |
| 584 | + "berri_bikes = bikes[['Berri 1']]\n", |
| 585 | + "berri_bikes['weekday'] = berri_bikes.index.weekday\n", |
| 586 | + "\n", |
| 587 | + "# Add up the number of cyclists by weekday, and plot!\n", |
| 588 | + "weekday_counts = berri_bikes.groupby('weekday').aggregate(sum)\n", |
| 589 | + "weekday_counts.index = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday']\n", |
| 590 | + "weekday_counts.plot(kind='bar')" |
| 591 | + ], |
| 592 | + "language": "python", |
| 593 | + "metadata": {}, |
| 594 | + "outputs": [ |
| 595 | + { |
| 596 | + "metadata": {}, |
| 597 | + "output_type": "pyout", |
| 598 | + "prompt_number": 13, |
| 599 | + "text": [ |
| 600 | + "<matplotlib.axes.AxesSubplot at 0x37d3850>" |
| 601 | + ] |
| 602 | + }, |
| 603 | + { |
| 604 | + "metadata": {}, |
| 605 | + "output_type": "display_data", |
| 606 | + "png": "iVBORw0KGgoAAAANSUhEUgAAA3sAAAFjCAYAAACE1xI8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X9sVfd9//HXdRxDbOyw4Nj3kixFgYQO3/pW1hLRjEgp\n7gINaQL1j0ZBbpXIoC1Dy34QLZHmUMtx6eLStYxoquIpM2mXbXapR0Ui1hpIddUwhXjgUBOWpKht\nyr3QAL62Mf55zvePhPuFAo59fe899779fEiRfD7XNu/rl861Xzk/rs91XVcAAAAAAFNyvB4AAAAA\nAJB8lD0AAAAAMIiyBwAAAAAGUfYAAAAAwCDKHgAAAAAYRNkDAAAAAINyJ3vw2LFj2rlzp5YtW6a6\nujpJ0uuvv669e/fquuuu01e+8hUFg0FJUk9Pjzo6OiRJtbW1SV8HAAAAAEzdpGVvbGxM69at0/Hj\nx+NrP/7xj/X8889reHhYzc3Nam5uluM4am9vV0NDgySpublZwWAwKetlZWXy+XwpefIAAAAAYNWk\nZa+8vFy9vb2Xrd16663q7e1VX1+f7rzzTklSNBpVIBBQXl6eJKm0tFSRSESu6854/eL3BgAAAABM\n3aRl72rKy8u1Z88ejY+Pa9WqVZKkwcFBFRQUqK2tTZKUn5+vgYEBSUrK+rXKXldX13THBwAAAABT\nKisrr7o+rbJ36tQpdXd36+/+7u8kSVu2bFF5ebnmzZun8+fPq76+Xq7rqrW1VUVFRXIcJynrk6mo\nqJjOUwAAAAAAM7q7u6/52CfejdN13fjHExMTmpiYiK+Pjo5Kkvx+vyKRSPzzotGo/H5/0taRmHA4\n7PUISCLytIMsbSFPO8jSFvK0gywTN+mRvc7OTh0+fFh9fX26cOGCNm7cqDvuuENbt26V4zhatWpV\n/Pq66upqNTU1SZJqamokSTk5OUlZBwAAAABMj8+99NBdlunq6uI0TgAAAACzVnd39zWv2eNN1QEA\nAADAoGnfjRPZIxwOa8WKFV6PgSQhTzvI0hbytIMsbSHP1BscHFR/f78kpfR9sWOxmG688caUff9M\n57qurrvuOpWUlEz750zZAwAAADAtZ86ckSQFAoGUFr2L/8ZsNzQ0pNOnT6u0tHRaX8c1ewAAAACm\n5eTJk1q4cKHXY8wq1/qZc80eAAAAgKRJ9dE8XCmRnzllzzDek8QW8rSDLG0hTzvI0hbyBLhmDwAA\nAEASRPpHdPr8aMq+f0lBngJFc1L2/S2i7BnGHahsIU87yNIW8rSDLG0hz/Q7fX5UT+15L2Xfv2XN\nkimXvS996Uvq7+9Xfn6+RkZGtGnTJn35y19O2WyX2r17t1zX1cMPPzzlrzl48KC2bt2qM2fOJPWo\nNGUPAAAAgCk+n0/bt29XKBTSuXPndPfdd+vhhx/Wddddl/J/+6GHHpr214TDYW3YsEFbt25N6ixc\ns2cY56rbQp52kKUt5GkHWdpCnrj4pgMffvihFixYEC96ExMTevbZZ/XAAw/o/vvv13/8x39c9nV/\n8Rd/oW3btunBBx/UF77wBe3atSv+2L/9279p06ZNeuyxx3T//ffr7//+7+OPvfnmm3rggQdUXl6u\nF154YVqzbt68WeXl5Yk+1WviyB4AAAAAc/7mb/5Gruvqgw8+0L//+7/H13fu3KmcnBy9+uqrGhkZ\n0Ze+9CUtX75cn/rUp+Kf8/rrr+uVV15RYWHhFd/3wIED+uEPf6ilS5detn7XXXfp1Vdf1T/8wz+k\n7klNE2XPMM5Vt4U87SBLW8jTDrK0hTzxj//4jwqFQjp+/Lgef/xx/dd//ZeKi4u1f/9+/frXv46f\nbjk8PKx33303XvZ8Pp82bNhw1aLn8/n04IMPXlH0MhVlDwAAAIBZS5cu1Wc/+1kdPHhQDz74oHJz\nc/X0009r9erV1/yai6eATvexTMM1e4Zxrrot5GkHWdpCnnaQpS3kiYul7He/+53efPNNLVu2TJK0\nZs0abd++XYODg5d93nS+Z7bgyB4AAACAGSspyFPLmiUp/f7T8eSTT2rOnDnxG7LcfvvtkqSqqiqd\nOnVKDz30kObOnStJ+s///E/Nmzcv/rU+n++q39Pn813zsd//vOlYv369fv3rX+tXv/qVKisrtWHD\nBj3yyCPT+h5XncPNtnp6ia6uLlVUVHg9BgAAADCrRCIRBQIBr8eYVa71M+/u7lZlZeVVv4bTOAEA\nAABMSxYfL8paifzMKXuGca66LeRpB1naQp52kKUt5Jl6juN4PcKskWi5puwBAAAAmJbi4mL99re/\npfClydmzZ1VUVDTtr+OaPQAAAADTNjo6qg8//FDS9G9IgqlzXVdz5szRggULrvr4ZNfscTdOAAAA\nANOWl5enhQsXej0GJsFpnIZxrrot5GkHWdpCnnaQpS3kaQdZJo6yBwAAAAAGTXrN3rFjx7Rz504t\nW7ZMdXV1kqQzZ85ox44dmpiY0OLFi/W1r31NktTT06OOjg5JUm1trYLBYFLXr4Zr9gAAAADMZglf\nszc2NqZ169bp+PHj8bWXX35ZjzzyiJYuXRpfcxxH7e3tamhokCQ1NzcrGAwmZb2srIwLPgEAAABg\nmiY9jbO8vFzz5s2LbzuOo1OnTl1W9CQpGo0qEAgoLy9PeXl5Ki0tVSQSScp6NBpNzTOfBTi/2Rby\ntIMsbSFPO8jSFvK0gywTN627cfb392t0dFQtLS0aGhrSF7/4Rd19990aHBxUQUGB2traJEn5+fka\nGBiQpKSsBwKBa84UDoe1YsWK+MeS2P54++23386oedgmT7bZnsp2pH9E7578nSTpxhtvlCTFYrGM\n3XaKF+ln73yQMfNMtn3HwpsVKJqTUXln0vZFmTIP2+TJ9kfbb7/9dkbNk2nb+fn5upZPfJ+93t5e\nvfXWW6qrq9P4+LgaGxvV2Ngox3HU0NCgxsZGffjhh+rs7FR9fb1c11Vra6uqqqrkOE5S1v1+/1Vn\n45o9ALDnSGRAT+15z+sxTGpZs0ShQKHXYwAAkmhG77N3aRfMzc1VcXGx+vr6dNNNNyk396Mv9/v9\nikQi8c+LRqPy+/1yHCcp6wAAAACA6Zm07HV2durw4cPq6+vThQsXtHHjRq1fv17f+973NDQ0pM99\n7nPKy8uTJFVXV6upqUmSVFNTI0nKyclJyjoSEw7//1Nckf3I0w6yBDIT+6Yt5GkHWSZu0rK3du1a\nrV279rK14uJiPfPMM1d8bigUUigUStk6AAAAAGDqeFN1w/g/ILaQpx1kCWQm9k1byNMOskwcZQ8A\nAAAADKLsGfb7tx5GdiNPO8gSyEzsm7aQpx1kmTjKHgAAAAAYRNkzjPObbSFPO8gSyEzsm7aQpx1k\nmTjKHgAAAAAY9Ilvqo7sxXuS2EKek4v0j+j0+VGvx5iSWCymG2+80esxpqSkIE+BojlejwGkBa+z\ntpCnHWSZOMoeABNOnx/VU3ve83qMafid1wNMScuaJZQ9AACyFKdxGsb/AbGFPAEgtXidtYU87SDL\nxFH2AAAAAMAgyp5hvCeJLeQJAKnF66wt5GkHWSaOsgcAAAAABlH2DOP8ZlvIEwBSi9dZW8jTDrJM\nHGUPAAAAAAyi7BnG+c22kCcApBavs7aQpx1kmTjKHgAAAAAYRNkzjPObbSFPAEgtXmdtIU87yDJx\nlD0AAAAAMIiyZxjnN9tCngCQWrzO2kKedpBl4ih7AAAAAGAQZc8wzm+2hTwBILV4nbWFPO0gy8RR\n9gAAAADAIMqeYZzfbAt5AkBq8TprC3naQZaJy53swWPHjmnnzp1atmyZ6urq4utjY2N68skn9dBD\nD2n16tWSpJ6eHnV0dEiSamtrFQwGk7oOAACyT6R/RKfPj3o9xpQ4xYt0JDLg9RhTUlKQp0DRHK/H\nAJDhJi17Y2NjWrdunY4fP37Z+k9+8hPdfvvt8W3HcdTe3q6GhgZJUnNzs4LBYFLWy8rK5PP5kveM\nZxHOb7aFPAFko9PnR/XUnve8HmMafuf1AFPSsmYJZe8T8HvTDrJM3KRlr7y8XL29vZetjYyMqKen\nR8uXL9fw8LAkKRqNKhAIKC8vT5JUWlqqSCQi13VnvH7xewMAAAAApm7Ssnc1r732mlavXq2+vr74\n2uDgoAoKCtTW1iZJys/P18DAR6dBJGN9srIXDofjbf/i+bxsf7T9z//8z/rMZz6TMfOwTZ6p3I7F\nYkLqpDtPpBZ5Zr9YLCYFCiV5//qbqdsX1zJlHrYT33777bf153/+5xkzT6Zt5+fn61p8ruu613xU\nUm9vr9566y3V1dVpaGhI27dv19NPP60DBw5oeHhYq1ev1smTJ9XZ2an6+nq5rqvW1lZVVVXJcZyk\nrPv9/qvO1tXVpYqKisnGn9XC4f9fhJH9yHNyRyIDWXaqWHZoWbNEoY//oEwXskwd8rTDiyyzDb83\n7SDLyXV3d6uysvKqj+V+0hdf2gXfeecdjY2N6bvf/a5Onz6tiYkJBYNBLVy4UJFIJP550WhUfr9f\njuMkZR2JYaewhTwBAJg6fm/aQZaJm7TsdXZ26vDhw+rr69OFCxe0cePG+JG0AwcOaGRkRLfeeqsk\nqbq6Wk1NTZKkmpoaSVJOTk5S1gEAAAAA0zNp2Vu7dq3Wrl171cfuu+++y7ZDoZBCodAVn5esdUwf\nh7xtIU8AAKaO35t2kGXieFN1AAAAADCIsmcY/wfEFvIEAGDq+L1pB1km7hNv0AJYFekf0enzo16P\nYVJJQR5v9gsAAOAxyp5hnN88udPnR7kdeIq0rFlC2QMAeIq/g+wgy8RR9qYpm44GOcWLdCQy4PUY\nU8bRIAAAACB5KHvTlH1Hg37n9QBTxtEgAACQLBwJsoMsE8cNWgAAAADAIMoeAAAAzAmHw16PgCQh\ny8RR9gAAAADAIMoeAAAAzOE6LzvIMnGUPQAAAAAwiLIHAAAAc7jOyw6yTBxlDwAAAAAMouwBAADA\nHK7zsoMsE0fZAwAAAACDKHsAAAAwh+u87CDLxFH2AAAAAMAgyh4AAADM4TovO8gycZQ9AAAAADCI\nsgcAAABzuM7LDrJMHGUPAAAAAAyi7AEAAMAcrvOygywTR9kDAAAAAINyJ3vw2LFj2rlzp5YtW6a6\nujpJ0osvvqiTJ0/KcRw98cQTKi0tlST19PSoo6NDklRbW6tgMJjUdQAAAGCqwuEwR4SMIMvETVr2\nxsbGtG7dOh0/fjy+tmHDBknS0aNHtXv3bm3YsEGO46i9vV0NDQ2SpObmZgWDwaSsl5WVyefzJf+Z\nAwAAAIBhk5a98vJy9fb2XvWxuXPnKjf3oy+PRqMKBALKy8uTJJWWlioSich13RmvX/zeAAAAwFRx\nJMgOskzcpGVvMvv379cDDzwgSRocHFRBQYHa2tokSfn5+RoYGJCkpKxPVvYuPax78basqdx2ihdN\n46eE6YjFYgq/fyRtecZisRQ+G6Rjf7x0mzxTK915IrXIM/vFYjEpUCgp/XmyzTbbmbWdn5+va/G5\nrute81FJvb29euutt+LX7EnSoUOHdOrUKa1Zs0aSdPLkSXV2dqq+vl6u66q1tVVVVVVyHCcp636/\n/6qzdXV1qaKiYrLxk+5IZEBP7Xkvrf/mbNGyZolCH//iSgeyTJ10ZymRZ6qQpS3kaYcXWWYbrvOy\ngywn193drcrKyqs+9olH9n6/C/7yl7/UsWPHLit/fr9fkUgkvh2NRuX3++U4TlLWAQAAAADTM2nZ\n6+zs1OHDh9XX16cLFy5o48aN+va3v60FCxaosbFRt912mx577DHl5OSourpaTU1NkqSamhpJSto6\nAAAAMB0cCbKDLBM3adlbu3at1q5de9najh07rvq5oVBIoVAoZesAAAAAgKnjTdUBAABgzsUbWSD7\nkWXiKHsAAAAAYBBlDwAAAOZwnZcdZJk4yh4AAAAAGETZAwAAgDlc52UHWSaOsgcAAAAABlH2AAAA\nYA7XedlBlomj7AEAAACAQZQ9AAAAmMN1XnaQZeIoewAAAABgEGUPAAAA5nCdlx1kmTjKHgAAAAAY\nRNkDAACAOVznZQdZJo6yBwAAAAAGUfYAAABgDtd52UGWiaPsAQAAAIBBlD0AAACYw3VedpBl4ih7\nAAAAAGAQZQ8AAADmcJ2XHWSZOMoeAAAAABhE2QMAAIA5XOdlB1kmjrIHAAAAAAZR9gAAAGAO13nZ\nQZaJy53swWPHjmnnzp1atmyZ6urqJEk9PT3q6OiQJNXW1ioYDKZlHQAAAN6J9I/o9PlRr8cwqaQg\nT4GiOV6PAYMmLXtjY2Nat26djh8/LklyHEft7e1qaGiQJDU3NysYDKZ0vaysTD6fLzXPHgAAAFNy\n+vyontrzntdjmNSyZgllbxLhcJijewmatOyVl5ert7c3vh2NRhUIBJSXlydJKi0tVSQSkeu6KVu/\n+G8CAAAAAKZu0rL3+wYHB1VQUKC2tjZJUn5+vgYGBiQppeuTlb1Lm/7FO/WkctspXjTVHxemKRaL\nKfz+kbTlGYvFUvhskI798dJt8kytdOeJ1CLP7BeLxaRAoaT05Vm4OJSqpzPreZFntm1flCnzZNJ2\nfn6+rsXnuq57zUcl9fb26q233lJdXZ1Onjypzs5O1dfXy3Vdtba2qqqqSo7jpHTd7/dfdbauri5V\nVFRMNn7SHYkMcApDirSsWaLQxy906UCWqZPuLCXyTBWytIU87SBLW7zIk2swU8OL6y+7u7tVWVl5\n1cc+8cjepV3Q7/crEonEt6PRqPx+vxzHSek6AAAAgOThGszUyLTrLycte52dnTp8+LD6+vp04cIF\nbdy4UdXV1WpqapIk1dTUSJJycnJSug4AAAAAmJ5Jy97atWu1du3ay9ZCoZBCoSvP2U71OgAAAABg\n6nhTdQAAAAAwiLIHAAAAAAZR9gAAAADAIMoeAAAAABhE2QMAAAAAgyh7AAAAAGAQZQ8AAAAADKLs\nAQAAAIBBlD0AAAAAMIiyBwAAAAAGUfYAAAAAwCDKHgAAAAAYRNkDAAAAAIMoewAAAABgEGUPAAAA\nAAyi7AEAAACAQZQ9AAAAADCIsgcAAAAABlH2AAAAAMAgyh4AAAAAGETZAwAAAACDKHsAAAAAYBBl\nDwAAAAAMyk30C19//XXt3btX1113nb7yla8oGAyqp6dHHR0dkqTa2loFg0FJSto6AAAAAGBqEi57\nP/7xj/X8889reHhYzc3Neu6559Te3q6GhgZJUnNzs4LBoBzHmfF6WVmZfD7fTJ8rAAAAAMwaCZe9\nW2+9Vb29verr69Odd96pSCSiQCCgvLw8SVJpaakikYhc153xejQaVSAQmOlzBQAAAIBZI+GyV15e\nrj179mhiYkL333+/BgcHVVBQoLa2NklSfn6+BgYGJCkp69cqe+FwWCtWrIh/LCml207xoun/sDAl\nsVhM4fePpC3PWCyWwmeDdOyPl26TZ2qlO0+kFnlmv1gsJgUKJaUvz8LFoVQ9nVmPPO1I99+z4XBY\n+fn515zH57quO90ncerUKb388svavHmzJGnLli16/PHHtWfPHtXX18t1XbW2tqqqqkqO46izs3PG\n636//4o5urq6VFFRMd3xZ+RIZEBP7Xkvrf/mbNGyZolCH7/QpQNZpk66s5TIM1XI0hbytIMsbSFP\nO7zIsru7W5WVlVd9LKEje47jaGJiQpLkuq5GR0fl9/sViUTinxONRuX3++U4TlLWAQAAAABTl1DZ\nCwQCuuOOO7R161Y5jqNVq1Zpzpw5qq6uVlNTkySppqZGkpSTk5OUdQAAAADA1CV8zd6Xv/zlK9ZC\noZBCoSvP/03WOgAAAABganhTdQAAAAAwiLIHAAAAAAZR9gAAAADAIMoeAAAAABhE2QMAAAAAgyh7\nAAAAAGAQZQ8AAAAADKLsAQAAAIBBlD0AAAAAMIiyBwAAAAAGUfYAAAAAwCDKHgAAAAAYRNkDAAAA\nAIMoewAAAABgEGUPAAAAAAyi7AEAAACAQZQ9AAAAADCIsgcAAAAABlH2AAAAAMAgyh4AAAAAGETZ\nAwAAAACDKHsAAAAAYBBlDwAAAAAMyk30C8+cOaMdO3ZoYmJCS5Ys0Ve/+lX19PSoo6NDklRbW6tg\nMChJSVsHAAAAAExNwmXv5Zdf1iOPPKKlS5dKkhzHUXt7uxoaGiRJzc3NCgaDSVkvKyuTz+eb0RMF\nAAAAgNkkobLnOI5OnToVL3qSFI1GFQgElJeXJ0kqLS1VJBKR67ozXr/4vQEAAAAAU5NQ2evv79fo\n6KhaWlo0NDSkL37xi5o/f74KCgrU1tYmScrPz9fAwIAkJWX9WmUvHA5rxYoV8Y8lpXTbKV40/R8Y\npiQWiyn8/pG05RmLxVL4bJCO/fHSbfJMrXTnidQiz+wXi8WkQKGk9OVZuDiUqqcz65GnHen+ezYc\nDis/P/+a8/hc13Wn+yTGx8fV2NioxsZGOY6jhoYG/dmf/Zn27Nmj+vp6ua6r1tZWVVVVyXEcdXZ2\nznjd7/dfMUdXV5cqKiqmO/6MHIkM6Kk976X135wtWtYsUejjF7p0IMvUSXeWEnmmClnaQp52kKUt\n5GmHF1l2d3ersrLyqo8ldGQvNzdXxcXF6uvr00033aTc3Fz5/X5FIpH450SjUfn9fjmOk5R1AAAA\nAMDUJXyDlvXr1+t73/uehoaG9LnPfU5z5sxRdXW1mpqaJEk1NTWSpJycnKSsAwAAAACmLuGyV1xc\nrGeeeeaytVAopFDoyvN/k7UOAAAAAJga3lQdAAAAAAyi7AEAAACAQZQ9AAAAADCIsgcAAAAABlH2\nAAAAAMAgyh4AAAAAGETZAwAAAACDKHsAAAAAYBBlDwAAAAAMouwBAAAAgEGUPQAAAAAwiLIHAAAA\nAAZR9gAAAADAIMoeAAAAABhE2QMAAAAAgyh7AAAAAGAQZQ8AAAAADKLsAQAAAIBBlD0AAAAAMIiy\nBwAAAAAGUfYAAAAAwCDKHgAAAAAYRNkDAAAAAINyZ/LFY2NjevLJJ/XQQw9p9erV6unpUUdHhySp\ntrZWwWBQkpK2DgAAAACYmhmVvZ/85Ce6/fbb5fP55Lqu2tvb1dDQIElqbm5WMBiU4zgzXi8rK5PP\n55vJqAAAAAAwqyRc9kZGRtTT06Ply5dreHhYkUhEgUBAeXl5kqTS0lJFIhG5rjvj9Wg0qkAgMNPn\nCgAAAACzRsJl77XXXtPq1avV19cnSRocHFRBQYHa2tokSfn5+RoYGJCkpKxfq+yFw2GtWLEi/rGk\nlG47xYum+ZPCVMViMYXfP5K2PGOxWAqfDdKxP166TZ6ple48kVrkmf1isZgUKJSUvjwLF4dS9XRm\nPfK0I91/z4bDYeXn519zHp/ruu50n8TQ0JC2b9+up59+WgcOHNDw8LDKy8vV2dmp+vp6ua6r1tZW\nVVVVyXGcpKz7/f4r5ujq6lJFRcV0x5+RI5EBPbXnvbT+m7NFy5olCn38QpcOZJk66c5SIs9UIUtb\nyNMOsrSFPO3wIsvu7m5VVlZe9bGEjuy98847Ghsb03e/+12dPn1aExMT+qM/+iNFIpH450SjUfn9\nfjmOk5R1AAAAAMDUJVT2Kioq4kfUDhw4oJGREX3qU59SdXW1mpqaJEk1NTWSpJycnKSsAwAAAACm\nbkZ345Sk++67L/5xKBRSKHTl+b/JWgcAAAAATA1vqg4AAAAABlH2AAAAAMAgyh4AAAAAGETZAwAA\nAACDKHsAAAAAYBBlDwAAAAAMouwBAAAAgEGUPQAAAAAwiLIHAAAAAAZR9gAAAADAIMoeAAAAABhE\n2QMAAAAAgyh7AAAAAGAQZQ8AAAAADKLsAQAAAIBBlD0AAAAAMIiyBwAAAAAGUfYAAAAAwCDKHgAA\nAAAYRNkDAAAAAIMoewAAAABgEGUPAAAAAAyi7AEAAACAQbmJfNGLL76okydPynEcPfHEEyotLVVP\nT486OjokSbW1tQoGg5KUtHUAAAAAwNQlVPY2bNggSTp69Kh2796t+vp6tbe3q6GhQZLU3NysYDAo\nx3FmvF5WViafzzfjJwoAAAAAs0lCZe+iuXPnKjc3V5FIRIFAQHl5eZKk0tJSRSIRua474/VoNKpA\nIDCTMQEAAABg1plR2du/f78eeOABDQ4OqqCgQG1tbZKk/Px8DQwMSFJS1icre+FwWCtWrIh/LCml\n207xoun9kDBlsVhM4fePpC3PWCyWwmeDdOyPl26TZ2qlO0+kFnlmv1gsJgUKJaUvz8LFoVQ9nVmP\nPO1I99+z4XBY+fn515zH57qum8gTOXTokE6dOqU1a9bo5MmT6uzsVH19vVzXVWtrq6qqquQ4TlLW\n/X7/VWfo6upSRUVFIuMn7EhkQE/teS+t/+Zs0bJmiUIfv9ClA1mmTrqzlMgzVcjSFvK0gyxtIU87\nvMiyu7tblZWVV30soSN7v/zlL3Xs2DHV1dVJkvx+vyKRSPzxaDQqv98vx3GSsg4AAAAAmJ6Eyt63\nv/1tLViwQI2Njbrtttv02GOPqbq6Wk1NTZKkmpoaSVJOTk5S1gEAAAAA05NQ2duxY8cVa6FQSKHQ\nlef+JmsdAAAAADB1vKk6AAAAABhE2QMAAAAAgyh7AAAAAGAQZQ8AAAAADKLsAQAAAIBBlD0AAAAA\nMIiyBwAAAAAGUfYAAAAAwCDKHgAAAAAYRNkDAAAAAIMoewAAAABgEGUPAAAAAAyi7AEAAACAQZQ9\nAAAAADCIsgcAAAAABlH2AAAAAMAgyh4AAAAAGETZAwAAAACDKHsAAAAAYBBlDwAAAAAMouwBAAAA\ngEGUPQAAAAAwiLIHAAAAAAblej3AtfT09Kijo0OSVFtbq2Aw6PFEAAAAAJA9MrLsOY6j9vZ2NTQ0\nSJKam5tVVlYmn8/n8WQAAAAAkB0y8jTOaDSqQCCgvLw85eXlqbS0VNFo1OuxAAAAACBr+FzXdb0e\n4vf93//9n9544434tuu6uueee3TnnXde9nldXV3pHg0AAAAAMkplZeVV1zPyNM558+bp/Pnzqq+v\nl+u6am1tVVFR0RWfd60nBQAAAACzXUaexun3+xWJROLb0WhUfr/fw4kAAAAAILtk5GmcknTkyJH4\n3ThrampQVtsYAAALo0lEQVRUXl7u8UQAAAAAkD0ytuwBAAAAABKXkadxAgAAAABmhrIHAAAAAAZR\n9owZHh72egQkCVkCmYl9EwCQLTLyrReQuK1bt8rv92vlypVaunSp1+NgBsjSluHhYc2dO9frMZAE\n7Ju2sG/aQZZ2kGXycIMWgz744AOFw2GdOHFCZWVl+vznP6/CwkKvx0ICyNKOLVu2UBAMYd+0g33T\nDrK0gyyTh7Jn0NDQkA4ePKj/+Z//ib8Z/ZIlS7Rq1SqPJ8N0kaUtFAQ72DdtYd+0gyztIMvkoOwZ\n853vfEcDAwO65557dM899+iGG26Ir//VX/2Vx9NhOsjSHgqCDeyb9rBv2kGWdpBlclD2jPntb3+r\nW2655Yr19957T0uWLPFgIiSKLG2hINjBvmkL+6YdZGkHWSYPZc8413Xl8/m8HgNJQJbZjYJgF/tm\ndmPftIMs7SDL5KHsGfPqq69q//79GhkZkSQVFhaqubnZ46mQCLK0jYKQvdg3bWPftIMs7SDLxPHW\nC8bs27dPW7du1a5du7Ry5Urt3r3b65GQILK0hYJgB/umLeybdpClHWSZPLypujElJSW6/vrrNTw8\nrOLiYp04ccLrkZAgsrRl3759+sY3vqE/+ZM/UUNDg26//XavR0KC2DdtYd+0gyztIMvkoewZc9dd\nd2l8fFwVFRXavHmzbrvtNq9HQoLI0hYKgh3sm7awb9pBlnaQZfJwzR4ApMH+/ft177336tixY/rX\nf/1XLV26VBs3bvR6LGDWY9+0gyztIMvkoewBAAAAgEHcoMWIZ555RpI0PDys0dFRFRUV6dy5cyoo\nKNC2bds8ng7TQZZAZmLfBABkG47sGfPCCy/o8ccf1w033KD+/n59//vf1xNPPOH1WEgAWdpAQbCH\nfdMG9k07yNIOskw+juwZ88EHH2jOnDmSpHnz5uk3v/mNxxMhUWRpw9atWyVdvSAgO7Fv2sC+aQdZ\n2kGWyUfZM+buu+9WQ0ODFi9erBMnTmj58uVej4QEkaUtFAQ72DdtYd+0gyztIMvk4TROg86dO6cP\nP/xQpaWlKioq8noczMC5c+d05swZlZSUkGWW+9GPfqRDhw7FC8If//Ef6+GHH/Z6LCSIfdMO9k07\nyNIOskweyh4ApAkFAchM7Jt2kKUdHLxIDsqeMa+88ooOHTqkvLy8+NrF85+RXfbt26eVK1fqnXfe\n0UsvvaRVq1Zp5cqVXo8FzHrsm0BmchxHOTk5Xo8BZBSu2TPm6NGjamlp4cXOgAMHDmjlypV68803\n1dTUpIaGBv6gzGIUBDvYN4HM1NjYqMbGRq/HQBJw8CJ5KHvGLF26VP39/Zo/f77Xo2CGHMfR+fPn\nVVhYqLy8POXn53s9EmaAgmAH+6YNP/zhD1VVVRW/1ful+KMyO+Xk5HB0zwgOXiQPZc+Ynp4evfHG\nG5eVPX5pZad7771X3/rWt7Rp0yZJ0qJFi7wdCDNCQbCDfdOGNWvWSJLmzp2rLVu2eDwNkmHhwoXa\ntm2bPvOZz0iSfD6fVq1a5fFUSAQHL5KHa/YAIA327t2rgwcPatOmTVqwYIHa2tr0ta99zeuxgFnv\nwIEDuu+++7weA0lw4MCBK9bINjtt3rxZ58+f5+BFElD2DDp79qyi0agCgYD+4A/+wOtxMAPj4+M6\ne/asSkpKvB4FwMc4TQwAkC34bWXMT3/6U23fvl3/+7//q+985zvq6uryeiQk6ODBg2pqatLzzz8v\nSdq+fbvHE2GmxsfHdfr0aa/HwAxxAwhbHMfxegQASBmu2TNm//79ampqUk5OjiYmJvTss8+qsrLS\n67GQgD179ujrX/+6nnvuOUkfvd8MstfBgwf12muv6fz58/rWt76l7du36y//8i+9HgsJ4CYQtnAH\nRzsuvdnOyMiIfD6ftm3b5uFESBRZJg9lzxifz6eLZ+a6riufz+fxREiU67oaGxuTJA0NDYkzrrMb\n5d0ObgJhC+Xdjkuv6RoZGdHu3bs9nAYzQZbJQ9kz5gtf+IKeffZZLV68WO+//77+9E//1OuRkKDq\n6mo1NDTo7Nmz+uY3v6lHH33U65EwA5R3O+644w6vR0ASUd5tmjNnjoaHh70eA0lAljPDDVqM6O3t\njX/c39+v06dPq6SkREVFRVq2bJmHk2EmHMfRwMCAioqKOEqb5Q4fPqwf/OAHOnv2rG655RY9+uij\n+vSnP+31WMCsxx0c7bj01D/HcbRkyRJt2LDBw4mQKLJMHsqeEV/96ldVWlqqYDB4xakodXV1Hk0F\n4FKUdwAAkE6UPSNGRkZ06NAhHT16VDfddJNqamq8HgkzxMXJQGZi37Rh27Zt+tu//VtJ0o9+9COt\nW7fO44kA7N27N34a9bvvvquXXnpJrutq/fr1CgaDHk+Xnbhmz4jBwUGdOXNGjuPw3npGcHGyLa+8\n8ooOHTqkvLy8+BpvEJud2DdtGBwcjH/c09ND2TOgo6ND1dXV8e0XX3yRU/+yzMGDB7Vq1Sq5rqtd\nu3Zpy5Ytcl1XW7dupewliLJnxBNPPKE//MM/1MKFC9XT06Oenh5JH11o/td//dceT4eZ4uLk7Hf0\n6FG1tLRwxz9j2Dezl+M4GhkZkeu6l33s8/k0Z84cr8dDAn7xi1/Ey57jOLyvaRYaHx/X0NCQfv7z\nn2v58uXxfZHfnYmj7BnxT//0T5IUvw7o4tm5XBeUva52cTKy19KlS9Xf36/58+d7PQpmiH3TBp/P\np29+85uSPvpD8uLHkrRlyxavxkICfvrTn6qrq0snT56M75/j4+MqLy/3eDJMV3V1tZqbm3XbbbfF\nj8o6jqNFixZ5O1gW45o9IMP893//t+6//36vx0CSbd68WefPn7+s7HEaJwAkz44dO7Rp0yavxwAy\nCmUPyDCNjY38X2UAAADMGKdxAhnm7Nmz2rt37xVvus0b/QKZgZvtANnh4jWYwGxG2QMyTE5ODjcH\nMOTi9SPDw8MaHR1VUVGRzp07p4KCAm7Xn6W42Q6QmV599VXt379fIyMjkqTCwkI1Nzd7PBXgLcoe\nkGHmz5+v++67z+sxkCQXj/i88MILevzxx3XDDTeov79f3//+9z2eDIniZjtAZtq3b5+2bt2qXbt2\naeXKlbwtCiDKHpBx7r33Xq9HQAp88MEH8SO28+bN029+8xuPJ8J0XXqXvzfeeIOb7QAZpqSkRNdf\nf72Gh4dVXFysEydOeD0S4DnKHpBhVq5c6fUISIG7775bDQ0NWrx4sU6cOKHly5d7PRKm6fOf/zx3\nygUy2F133aXx8XFVVFRo8+bNWrp0qdcjAZ7jbpwAkCbnzp3TmTNnVFJSoqKiIq/HwTRxp1wAQLbh\nyB4ApElhYWH8Ji3IPtwpF8hMe/fuje+D7777rl566SW5rqv169crGAx6PB3gLW4lBgBpcPDgQTU1\nNamlpUWStH37do8nwnRdvFPu3LlzL/uPu+cC3jp48KCkj95qYdeuXdqyZYu2bNmi9vZ2jycDvMeR\nPQBIgz179ujrX/+6nnvuOUkfndKJ7MKdcoHMND4+rqGhIf385z/X8uXL4/8DhrdHATiyBwBp4bqu\nxsbGJElDQ0NXnAqIzMedcoHMVF1drebmZr3//vvx/dRxHC1atMjbwYAMwA1aACANDh8+rB/84Ac6\ne/asbrnlFj366KP69Kc/7fVYAADAMMoeAKTQc889p5KSEt188826+eabddNNN2nhwoW8ITcAAEg5\nyh4ApNDo6KjOnj2rs2fP6ty5c/rVr36l119/XY7j6MUXX/R6PAAAYBhlDwDSYN++ffrFL36hoqIi\nffazn9WyZct0/fXXez0WAAAwjBu0AECa+Xw+7hIHAABSjiN7AJBCw8PD8VM4L57G+bOf/Uzj4+P6\nl3/5F6/HAwAAhlH2ACCFvvGNb+jmm29WcXFx/CYtN998s+bPn8/RPQAAkFKUPQAAAAAwiP+tDAAA\nAAAGUfYAAAAAwCDKHgAAAAAYRNkDAAAAAIP+HyBxTzzw2gEQAAAAAElFTkSuQmCC\n", |
| 607 | + "text": [ |
| 608 | + "<matplotlib.figure.Figure at 0x37d32d0>" |
| 609 | + ] |
| 610 | + } |
| 611 | + ], |
| 612 | + "prompt_number": 13 |
| 613 | + }, |
559 | 614 | {
|
560 | 615 | "cell_type": "markdown",
|
561 | 616 | "metadata": {},
|
|
0 commit comments