-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathSMPDB_pathway.py
executable file
·154 lines (127 loc) · 6.75 KB
/
SMPDB_pathway.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
__author__ = "Hedra"
__email__ = "[email protected]"
# The following script imports the following files from Small molecule database at http://smpdb.ca/
#1 Metabolite names linked to SMPDB pathways CSV (includes KEGG and ChEBI IDs)
#2 Protein names linked to SMPDB pathways CSV (includes UniProt IDs)
# Requires: smpdb_metabolites.csv.zip
# smpdb_proteins.csv.zip
# from http://smpdb.ca/downloads/smpdb_metabolites.csv.zip
# http://smpdb.ca/downloads/smpdb_proteins.csv.zip
import pandas as pd
import os
from urllib.request import urlopen
from zipfile import ZipFile
from io import BytesIO
import wget
import metadata
from datetime import date
from atomwrappers import *
import argparse
script = "https://github.com/MOZI-AI/knowledge-import/SMPDB_pathway.py"
def import_metabolites(gene_level=False):
pathways = []
chebis = []
source = "http://smpdb.ca/downloads/smpdb_metabolites.csv.zip"
if not "smpdb_metabolites.csv.zip" in os.listdir("raw_data/"):
print("Started downloading smpdb_metabolites.csv, it will take some time to download")
wget.download(source, "raw_data/")
ZipFile("raw_data/smpdb_metabolites.csv.zip").extractall("raw_data/smpdb_chebi")
pathway_chebi = os.listdir("raw_data/smpdb_chebi")
print("Started importing {} files of smpdb_metabolites".format(len(pathway_chebi)))
# For a gene level dataset, excelude the name
if gene_level:
if not os.path.exists(os.path.join(os.getcwd(), 'gene-level')):
os.makedirs('gene-level')
g = open("gene-level/smpdb_chebi_{}.scm".format(str(date.today())), "w")
with open("dataset/smpdb_chebi_{}.scm".format(str(date.today())), 'w') as f:
for filename in pathway_chebi:
data = pd.read_csv("raw_data/smpdb_chebi/"+filename, low_memory=False)
for r,c in data.iterrows():
chebi_id = filter_nan(str(data.iloc[r]['ChEBI ID']).split(".")[0].strip())
smpdb_id = filter_nan(str(data.iloc[r]['SMPDB ID']).strip())
chebi_name = filter_nan(str(data.iloc[r]['IUPAC']).strip())
try:
if chebi_id:
chebi_id= "ChEBI:" + chebi_id
member = CMemberLink(ChebiNode(chebi_id), SMPNode(smpdb_id))
f.write(member.recursive_print() + "\n")
if gene_level:
g.write(member.recursive_print() + "\n")
if not chebi_id in chebis:
ch_name = CEvaluationLink(CPredicateNode("has_name"), CListLink(ChebiNode(chebi_id), CConceptNode(chebi_name)))
f.write(ch_name.recursive_print() + "\n")
chebis.append(chebi_id)
if not smpdb_id in pathways:
pathways.append(smpdb_id)
except AttributeError:
print("Null value detected")
continue
num_pathways = {"SMPDB Pathway": len(pathways)}
metadata.update_meta("smpdb_metabolites: Latest",source, script,chebi=len(chebis), pathways=num_pathways)
print("Done. Check dataset/smpdb_chebi.scm")
def import_proteins(gene_level=False):
pathways = []
proteins = []
genes = []
source = "http://smpdb.ca/downloads/smpdb_proteins.csv.zip"
if not "smpdb_proteins.csv.zip" in os.listdir("raw_data/"):
print("Started downloading smpdb_proteins.csv, It will take some time to download \n")
wget.download(source, "raw_data")
ZipFile("raw_data/smpdb_proteins.csv.zip").extractall("raw_data/smpdb_prot")
pathway_prot = os.listdir("raw_data/smpdb_prot")
print("Started importing {} files of smpdb_proteins".format(len(pathway_prot)))
if gene_level:
g = open("gene-level/smpdb_gene_{}.scm".format(str(date.today())), "w")
with open("dataset/smpdb_protein_{}.scm".format(str(date.today())), 'w') as f:
for filename in pathway_prot:
data = pd.read_csv("raw_data/smpdb_prot/"+filename, low_memory=False)
for r,c in data.iterrows():
protein = filter_nan(str(data.iloc[r]['Uniprot ID']).split(".")[0].strip())
protein_name = filter_nan(str(data.iloc[r]['Protein Name']).strip())
gene = filter_nan(str(data.iloc[r]['Gene Name']).upper().strip())
smpdb_id = filter_nan(str(data.iloc[r]['SMPDB ID']).strip())
smpdb_name = filter_nan(str(data.iloc[r]['Pathway Name']).strip())
try:
member = CMemberLink(CGeneNode(gene), SMPNode(smpdb_id))
f.write(member.recursive_print() + "\n")
expression = CEvaluationLink(CPredicateNode("expresses"), CListLink(CGeneNode(gene), ProteinNode(protein)))
f.write(expression.recursive_print() + "\n")
if gene_level:
g.write(member.recursive_print() + "\n")
if not smpdb_id in pathways:
smp_name = CEvaluationLink(CPredicateNode("has_name"), CListLink(SMPNode(smpdb_id), CConceptNode(smpdb_name)))
f.write(smp_name.recursive_print() + "\n")
pathways.append(smpdb_id)
if not protein in proteins:
prot_name = CEvaluationLink(CPredicateNode("has_name"), CListLink(ProteinNode(protein), CConceptNode(protein_name)))
f.write(prot_name.recursive_print() + "\n")
proteins.append(protein)
if not gene in genes:
genes.append(gene)
except AttributeError:
print("Null value detected")
continue
num_pathways = {"SMPDB Pathway": len(pathways)}
metadata.update_meta("smpdb_proteins: Latest",source, script,genes=len(genes), prot=len(proteins),pathways=num_pathways)
print("Done. Check dataset/smpdb_protein.scm and gene-level/smpdb_gene.scm")
def filter_nan(value):
if str(value).lower() == "nan":
return False
else:
return str(value)
def parse_arg():
parser = argparse.ArgumentParser(description='Imports metabolite and protein sets of SMPDB pathway from http://smpdb.ca/downloads')
parser.add_argument('--option', type=str, default='all',
help='which dataset to import: P for proteins, M for metabolites')
return parser.parse_args()
if __name__ == "__main__":
option = parse_arg().option
if option == "P" or option == "p":
import_proteins(gene_level=True)
elif option == "M" or option == "m":
import_metabolites(gene_level=True)
elif option == "B" or option == "all":
import_proteins(gene_level=True)
import_metabolites(gene_level=True)
else:
print("Incorect option, Try again")