-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathcurrent_symbols.py
executable file
·72 lines (63 loc) · 2.78 KB
/
current_symbols.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import pandas as pd
import requests
import io
import numpy as np
# Splits string entry to rows and expand the dataframe
def explode(df, lst_cols, fill_value='NA', preserve_index=False):
# make sure `lst_cols` is list-alike
if (lst_cols is not None
and len(lst_cols) > 0
and not isinstance(lst_cols, (list, tuple, np.ndarray, pd.Series))):
lst_cols = [lst_cols]
# all columns except `lst_cols`
idx_cols = df.columns.difference(lst_cols)
# calculate lengths of lists
lens = df[lst_cols[0]].str.len()
# preserve original index values
idx = np.repeat(df.index.values, lens)
# create "exploded" DF
res = (pd.DataFrame({
col:np.repeat(df[col].values, lens)
for col in idx_cols},
index=idx)
.assign(**{col:np.concatenate(df.loc[lens>0, col].values)
for col in lst_cols}))
# append those rows that have empty lists
if (lens == 0).any():
# at least one list in cells is empty
res = (res.append(df.loc[lens==0, idx_cols], sort=False)
.fillna(fill_value))
# revert the original index order
res = res.sort_index()
# reset index if requested
if not preserve_index:
res = res.reset_index(drop=True)
return res
# Get the current vs previous gene symbol mapping from HGNC
url = "https://www.genenames.org/cgi-bin/download/custom?col=gd_app_sym&"+ \
"col=gd_prev_sym&status=Approved&status=Entry%20Withdrawn&hgnc_dbtag=on&" + \
"order_by=gd_app_sym_sort&format=text&submit=submit"
current_symbols_df = []
previous_symbols = []
def build_df():
global current_symbols_df
global previous_symbols
data = requests.get(url).content
current_symbols_df = pd.read_csv(io.StringIO(data.decode('utf-8')), sep="\t")
current_symbols_df = current_symbols_df.fillna("NA")
# Split string entry(morethan one previous Gene symbols listed as a string) to separate rows
current_symbols_df["Previous symbols"] = current_symbols_df["Previous symbols"].str.split(",")
current_symbols_df = explode(current_symbols_df, ["Previous symbols"])
# Convert Gene symbols to uppercase and remove space
current_symbols_df["Previous symbols"] = current_symbols_df["Previous symbols"].str.upper().str.strip()
current_symbols_df["Approved symbol"] = current_symbols_df["Approved symbol"].str.upper()
previous_symbols = current_symbols_df["Previous symbols"].unique()
def get_current_symbol(gene):
if len(current_symbols_df) == 0:
build_df()
gene = str(gene).upper()
if gene in previous_symbols:
result = current_symbols_df[current_symbols_df["Previous symbols"] == gene]["Approved symbol"].values
if len(result) > 0:
gene = result[0]
return gene