forked from shenweichen/DeepCTR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_din.py
40 lines (29 loc) · 1.76 KB
/
run_din.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import numpy as np
from deepctr.models import DIN
from deepctr.inputs import SparseFeat,VarLenSparseFeat,DenseFeat,get_fixlen_feature_names,get_varlen_feature_names
def get_xy_fd():
feature_columns = [SparseFeat('user',3),SparseFeat(
'gender', 2), SparseFeat('item', 3 + 1), SparseFeat('item_gender', 2 + 1),DenseFeat('score', 1)]
feature_columns += [VarLenSparseFeat('hist_item',3+1, maxlen=4, embedding_name='item'),
VarLenSparseFeat('hist_item_gender',3+1, maxlen=4, embedding_name='item_gender')]
behavior_feature_list = ["item", "item_gender"]
uid = np.array([0, 1, 2])
ugender = np.array([0, 1, 0])
iid = np.array([1, 2, 3]) # 0 is mask value
igender = np.array([1, 2, 1]) # 0 is mask value
score = np.array([0.1, 0.2, 0.3])
hist_iid = np.array([[1, 2, 3, 0], [1, 2, 3, 0], [1, 2, 0, 0]])
hist_igender = np.array([[1, 1, 2, 0], [2, 1, 1, 0], [2, 1, 0, 0]])
feature_dict = {'user': uid, 'gender': ugender, 'item': iid, 'item_gender': igender,
'hist_item': hist_iid, 'hist_item_gender': hist_igender, 'score': score}
fixlen_feature_names = get_fixlen_feature_names(feature_columns)
varlen_feature_names = get_varlen_feature_names(feature_columns)
x = [feature_dict[name] for name in fixlen_feature_names] + [feature_dict[name] for name in varlen_feature_names]
y = [1, 0, 1]
return x, y, feature_columns, behavior_feature_list
if __name__ == "__main__":
x, y, feature_columns, behavior_feature_list = get_xy_fd()
model = DIN(feature_columns, behavior_feature_list, hist_len_max=4, )
model.compile('adam', 'binary_crossentropy',
metrics=['binary_crossentropy'])
history = model.fit(x, y, verbose=1, epochs=10, validation_split=0.5)