Skip to content

Commit 370708d

Browse files
Update README.md
1 parent 0b08b65 commit 370708d

File tree

1 file changed

+5
-5
lines changed

1 file changed

+5
-5
lines changed

README.md

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -79,7 +79,7 @@ with 'flash' detection accuracy balanced with 'minimum_percentage_probability' w
7979
<h3><b><u>Image Prediction</u></b></h3>
8080
<b>ImageAI</b> provides 4 different algorithms and model types to perform image prediction, trained on the ImageNet-1000 dataset.
8181
The 4 algorithms provided for image prediction include <b>SqueezeNet</b>, <b>ResNet</b>, <b>InceptionV3</b> and <b>DenseNet</b>.
82-
You will find below the result of an example prediction using the ResNet50 model, and the 'Full Details & Documentation' link.
82+
You will find below the result of an example prediction using the ResNet50 model, and the 'Full Details & Documentation' link below the image.
8383
Click the link to see the full sample codes, explainations, best practices guide and documentation.
8484
<p><img src="images/1.jpg" style="width: 400px; height: auto;" />
8585
<pre>convertible : 52.459555864334106
@@ -101,7 +101,7 @@ minivan : 1.7487050965428352</pre>
101101
<b>ImageAI</b> provides very convenient and powerful methods
102102
to perform object detection on images and extract each object from the image. The object detection class provided only supports
103103
the current state-of-the-art RetinaNet, but with options to adjust for state of the art performance or real time processing.
104-
You will find below the result of an example object detection using the RetinaNet model, and the 'Full Details & Documentation' link.
104+
You will find below the result of an example object detection using the RetinaNet model, and the 'Full Details & Documentation' link below the images.
105105
Click the link to see the full sample codes, explainations, best practices guide and documentation.
106106
<div style="width: 600px;" >
107107
<b><p><i>Input Image</i></p></b></br>
@@ -143,7 +143,7 @@ person : 87.10319399833679
143143
<b>ImageAI</b> provides very convenient and powerful methods
144144
to perform object detection in videos and track specific object(s). The video object detection class provided only supports
145145
the current state-of-the-art RetinaNet, but with options to adjust for state of the art performance or real time processing.
146-
You will find below the result of an example object detection using the RetinaNet model, and the 'Full Details & Documentation' link.
146+
You will find below the result of an example object detection using the RetinaNet model, and the 'Full Details & Documentation' link below the images.
147147
Click the link to see the full videos, sample codes, explainations, best practices guide and documentation.
148148
<p><div style="width: 600px;" >
149149
<p><i><b>Video Object Detection</b></i></p>
@@ -167,7 +167,7 @@ Click the link to see the full videos, sample codes, explainations, best practic
167167
<h3><b><u>Custom Model Training </u></b></h3>
168168
<b>ImageAI</b> provides classes and methods for you to train a new model that can be used to perform prediction on your own custom objects.
169169
You can train your custom models using SqueezeNet, ResNet50, InceptionV3 and DenseNet in less than <b> 12 </b> lines of code.
170-
You will find below the 'Full Details & Documentation' link.
170+
You will find below the 'Full Details & Documentation' link below the image.
171171
Click the link to see the guide to preparing training images, sample training codes, explainations, best practices guide and documentation.
172172
<br>
173173
<p><br>
@@ -190,7 +190,7 @@ Click the link to see the guide to preparing training images, sample training co
190190
<h3><b><u>Custom Image Prediction </u></b></h3>
191191
<b>ImageAI</b> provides classes and methods for you to run image prediction your own custom objects using your own model trained with <b>ImageAI</b> Model Training class.
192192
You can use custom models trained with SqueezeNet, ResNet50, InceptionV3 and DenseNet and the JSON file containing the mapping of the custom object names.
193-
You will find below the 'Full Details & Documentation' link.
193+
You will find below the 'Full Details & Documentation' link below the image.
194194
Click the link to see the guide to sample training codes, explainations, best practices guide and documentation.
195195
<br>
196196
<p><br>

0 commit comments

Comments
 (0)