@@ -534,7 +534,7 @@ def nnGradient(nn_params,input_layer_size,hidden_layer_size,num_labels,X,y,Lambd
534
534
- 因为下一层的单元利用上一层的单元作为输入进行计算
535
535
- 大体的推导过程如下,最终我们是想预测函数与已知的` y ` 非常接近,求均方差的梯度沿着此梯度方向可使代价函数最小化。可对照上面求梯度的过程。
536
536
![ enter description here] [ 17 ]
537
- - 求误差更详细的推到过程 :
537
+ - 求误差更详细的推导过程 :
538
538
![ enter description here] [ 18 ]
539
539
540
540
### 6、梯度检查
@@ -661,7 +661,14 @@ def predict(Theta1,Theta2,X):
661
661
- 先说一下向量内积
662
662
- ![ u = \left[ {\begin{array}{c} {{u_1}} \\ {{u_2}} \end{array} } \right]] ( http://chart.apis.google.com/chart?cht=tx&chs=1x0&chf=bg,s,FFFFFF00&chco=000000&chl=u%20%3D%20%5Cleft%5B%20%7B%5Cbegin%7Barray%7D%7Bc%7D%20%20%20%20%7B%7Bu_1%7D%7D%20%5C%5C%20%20%20%20%7B%7Bu_2%7D%7D%20%20%5Cend%7Barray%7D%20%7D%20%5Cright%5D ) ,![ v = \left[ {\begin{array}{c} {{v_1}} \\ {{v_2}} \end{array} } \right]] ( http://chart.apis.google.com/chart?cht=tx&chs=1x0&chf=bg,s,FFFFFF00&chco=000000&chl=v%20%3D%20%5Cleft%5B%20%7B%5Cbegin%7Barray%7D%7Bc%7D%20%20%20%20%7B%7Bv_1%7D%7D%20%5C%5C%20%20%20%20%7B%7Bv_2%7D%7D%20%20%5Cend%7Barray%7D%20%7D%20%5Cright%5D )
663
663
- ![ ||u||] ( http://chart.apis.google.com/chart?cht=tx&chs=1x0&chf=bg,s,FFFFFF00&chco=000000&chl=%7C%7Cu%7C%7C ) 表示` u ` 的** 欧几里得范数** (欧式范数),![ ||u||{\text{ = }}\sqrt {{\text{u}}_ 1^2 + u_2^2} ] ( http://chart.apis.google.com/chart?cht=tx&chs=1x0&chf=bg,s,FFFFFF00&chco=000000&chl=%7C%7Cu%7C%7C%7B%5Ctext%7B%20%3D%20%7D%7D%5Csqrt%20%7B%7B%5Ctext%7Bu%7D%7D_1%5E2%20%2B%20u_2%5E2%7D%20 )
664
- -
664
+ - ` 向量V ` 在` 向量u ` 上的投影的长度记为` p ` ,则:向量内积:
665
+ ![ {{\text{u}}^T}v = p||u|| = {u_1}{v_1} + {u_2}{v_2}] ( http://chart.apis.google.com/chart?cht=tx&chs=1x0&chf=bg,s,FFFFFF00&chco=000000&chl=%7B%7B%5Ctext%7Bu%7D%7D%5ET%7Dv%20%3D%20p%7C%7Cu%7C%7C%20%3D%20%7Bu_1%7D%7Bv_1%7D%20%2B%20%7Bu_2%7D%7Bv_2%7D )
666
+ ![ enter description here] [ 27 ]
667
+ 根据向量夹角公式推导一下即可。![ \cos \theta = \frac{{\overrightarrow {\text{u}} \overrightarrow v }}{{|\overrightarrow {\text{u}} ||\overrightarrow v |}}] ( http://chart.apis.google.com/chart?cht=tx&chs=1x0&chf=bg,s,FFFFFF00&chco=000000&chl=%5Ccos%20%5Ctheta%20%20%3D%20%5Cfrac%7B%7B%5Coverrightarrow%20%7B%5Ctext%7Bu%7D%7D%20%5Coverrightarrow%20v%20%7D%7D%7B%7B%7C%5Coverrightarrow%20%7B%5Ctext%7Bu%7D%7D%20%7C%7C%5Coverrightarrow%20v%20%7C%7D%7D )
668
+
669
+ - 前面说过,当` C ` 越大时,` margin ` 也就越大,我们的目的是最小化代价函数` J(θ) ` ,当` margin ` 最大时,` C ` 的乘积项![ \sum\limits_ {i = 1}^m {[ {y^{(i)}}\cos {t_1}({\theta ^T}{x^{(i)}}) + (1 - {y^{(i)}})\cos {t_0}({\theta ^T}{x^{(i)}})} ]] ( http://chart.apis.google.com/chart?cht=tx&chs=1x0&chf=bg,s,FFFFFF00&chco=000000&chl=%5Csum%5Climits_%7Bi%20%3D%201%7D%5Em%20%7B%5B%7By%5E%7B%28i%29%7D%7D%5Ccos%20%7Bt_1%7D%28%7B%5Ctheta%20%5ET%7D%7Bx%5E%7B%28i%29%7D%7D%29%20%2B%20%281%20-%20%7By%5E%7B%28i%29%7D%7D%29%5Ccos%20%7Bt_0%7D%28%7B%5Ctheta%20%5ET%7D%7Bx%5E%7B%28i%29%7D%7D%29%7D%20%5D ) 要很小,所以近似为:
670
+ ![ J(\theta ) = C0 + \frac{1}{2}\sum\limits_ {j = 1}^{\text{n}} {\theta _ j^2} = \frac{1}{2}\sum\limits_ {j = 1}^{\text{n}} {\theta _ j^2} = \frac{1}{2}(\theta _ 1^2 + \theta _ 2^2) = \frac{1}{2}{\sqrt {\theta _ 1^2 + \theta _ 2^2} ^2}] ( http://chart.apis.google.com/chart?cht=tx&chs=1x0&chf=bg,s,FFFFFF00&chco=000000&chl=J%28%5Ctheta%20%29%20%3D%20C0%20%2B%20%5Cfrac%7B1%7D%7B2%7D%5Csum%5Climits_%7Bj%20%3D%201%7D%5E%7B%5Ctext%7Bn%7D%7D%20%7B%5Ctheta%20_j%5E2%7D%20%20%3D%20%5Cfrac%7B1%7D%7B2%7D%5Csum%5Climits_%7Bj%20%3D%201%7D%5E%7B%5Ctext%7Bn%7D%7D%20%7B%5Ctheta%20_j%5E2%7D%20%20%3D%20%5Cfrac%7B1%7D%7B2%7D%28%5Ctheta%20_1%5E2%20%2B%20%5Ctheta%20_2%5E2%29%20%3D%20%5Cfrac%7B1%7D%7B2%7D%7B%5Csqrt%20%7B%5Ctheta%20_1%5E2%20%2B%20%5Ctheta%20_2%5E2%7D%20%5E2%7D )
671
+
665
672
666
673
667
674
@@ -691,4 +698,5 @@ def predict(Theta1,Theta2,X):
691
698
[ 23 ] : ./images/NeuralNetwork_09.png " NeuralNetwork_09.png "
692
699
[ 24 ] : ./images/SVM_01.png " SVM_01.png "
693
700
[ 25 ] : ./images/SVM_02.png " SVM_02.png "
694
- [ 26 ] : ./images/SVM_03.png " SVM_03.png "
701
+ [ 26 ] : ./images/SVM_03.png " SVM_03.png "
702
+ [ 27 ] : ./images/SVM_04.png " SVM_04.png "
0 commit comments