forked from svpcom/wfb-ng
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrx.cpp
806 lines (670 loc) · 25.4 KB
/
rx.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
// -*- C++ -*-
//
// Copyright (C) 2017 Vasily Evseenko <[email protected]>
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 3.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include <assert.h>
#include <stdio.h>
#include <inttypes.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <time.h>
#include <sys/resource.h>
#include <pcap/pcap.h>
#include <poll.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
extern "C"
{
#include "ieee80211_radiotap.h"
#include "fec.h"
}
#include <string>
#include <memory>
#include "wifibroadcast.hpp"
#include "rx.hpp"
Receiver::Receiver(const char *wlan, int wlan_idx, int radio_port, BaseAggregator *agg) : wlan_idx(wlan_idx), agg(agg)
{
char errbuf[PCAP_ERRBUF_SIZE];
ppcap = pcap_create(wlan, errbuf);
if (ppcap == NULL){
throw runtime_error(string_format("Unable to open interface %s in pcap: %s", wlan, errbuf));
}
if (pcap_set_snaplen(ppcap, 4096) !=0) throw runtime_error("set_snaplen failed");
if (pcap_set_promisc(ppcap, 1) != 0) throw runtime_error("set_promisc failed");
//if (pcap_set_rfmon(ppcap, 1) !=0) throw runtime_error("set_rfmon failed");
if (pcap_set_timeout(ppcap, -1) !=0) throw runtime_error("set_timeout failed");
//if (pcap_set_buffer_size(ppcap, 2048) !=0) throw runtime_error("set_buffer_size failed");
if (pcap_activate(ppcap) !=0) throw runtime_error(string_format("pcap_activate failed: %s", pcap_geterr(ppcap)));
if (pcap_setnonblock(ppcap, 1, errbuf) != 0) throw runtime_error(string_format("set_nonblock failed: %s", errbuf));
int link_encap = pcap_datalink(ppcap);
struct bpf_program bpfprogram;
string program;
switch (link_encap)
{
case DLT_PRISM_HEADER:
fprintf(stderr, "%s has DLT_PRISM_HEADER Encap\n", wlan);
program = string_format("radio[0x4a:4]==0x13223344 && radio[0x4e:2] == 0x55%.2x", radio_port);
break;
case DLT_IEEE802_11_RADIO:
fprintf(stderr, "%s has DLT_IEEE802_11_RADIO Encap\n", wlan);
program = string_format("ether[0x0a:4]==0x13223344 && ether[0x0e:2] == 0x55%.2x", radio_port);
break;
default:
throw runtime_error(string_format("unknown encapsulation on %s", wlan));
}
if (pcap_compile(ppcap, &bpfprogram, program.c_str(), 1, 0) == -1) {
throw runtime_error(string_format("Unable to compile %s: %s", program.c_str(), pcap_geterr(ppcap)));
}
if (pcap_setfilter(ppcap, &bpfprogram) == -1) {
throw runtime_error(string_format("Unable to set filter %s: %s", program.c_str(), pcap_geterr(ppcap)));
}
pcap_freecode(&bpfprogram);
fd = pcap_get_selectable_fd(ppcap);
}
Receiver::~Receiver()
{
close(fd);
pcap_close(ppcap);
}
void Receiver::loop_iter(void)
{
for(;;) // loop while incoming queue is not empty
{
struct pcap_pkthdr hdr;
const uint8_t* pkt = pcap_next(ppcap, &hdr);
if (pkt == NULL) {
break;
}
int pktlen = hdr.caplen;
// int pkt_rate = 0
uint8_t antenna = 0;
uint8_t rssi = 0;
uint8_t flags = 0;
struct ieee80211_radiotap_iterator iterator;
int ret = ieee80211_radiotap_iterator_init(&iterator, (ieee80211_radiotap_header*)pkt, pktlen, NULL);
while (ret == 0) {
ret = ieee80211_radiotap_iterator_next(&iterator);
if (ret)
continue;
/* see if this argument is something we can use */
switch (iterator.this_arg_index)
{
/*
* You must take care when dereferencing iterator.this_arg
* for multibyte types... the pointer is not aligned. Use
* get_unaligned((type *)iterator.this_arg) to dereference
* iterator.this_arg for type "type" safely on all arches.
*/
// case IEEE80211_RADIOTAP_RATE:
// /* radiotap "rate" u8 is in
// * 500kbps units, eg, 0x02=1Mbps
// */
// pkt_rate = (*(uint8_t*)(iterator.this_arg))/2;
// break;
case IEEE80211_RADIOTAP_ANTENNA:
antenna = *(uint8_t*)(iterator.this_arg);
break;
case IEEE80211_RADIOTAP_DBM_ANTSIGNAL:
rssi = *(int8_t*)(iterator.this_arg);
break;
case IEEE80211_RADIOTAP_FLAGS:
flags = *(uint8_t*)(iterator.this_arg);
break;
default:
break;
}
} /* while more rt headers */
if (ret != -ENOENT){
fprintf(stderr, "Error parsing radiotap header!\n");
continue;
}
if (flags & IEEE80211_RADIOTAP_F_FCS)
{
pktlen -= 4;
}
if (flags & IEEE80211_RADIOTAP_F_BADFCS)
{
fprintf(stderr, "Got packet with bad fsc\n");
continue;
}
/* discard the radiotap header part */
pkt += iterator._max_length;
pktlen -= iterator._max_length;
if (pktlen > sizeof(ieee80211_header))
{
agg->process_packet(pkt + sizeof(ieee80211_header), pktlen - sizeof(ieee80211_header), wlan_idx, antenna, rssi, NULL);
} else {
fprintf(stderr, "short packet (ieee header)\n");
continue;
}
}
}
Aggregator::Aggregator(const string &client_addr, int client_port, int k, int n, const string &keypair) : fec_k(k), fec_n(n), seq(0), rx_ring_front(0), rx_ring_alloc(0), last_known_block((uint64_t)-1),
count_p_all(0), count_p_dec_err(0), count_p_dec_ok(0), count_p_fec_recovered(0),
count_p_lost(0), count_p_bad(0)
{
sockfd = open_udp_socket_for_tx(client_addr, client_port);
fec_p = fec_new(fec_k, fec_n);
memset(session_key, '\0', sizeof(session_key));
for(int ring_idx = 0; ring_idx < RX_RING_SIZE; ring_idx++)
{
rx_ring[ring_idx].block_idx = 0;
rx_ring[ring_idx].send_fragment_idx = 0;
rx_ring[ring_idx].has_fragments = 0;
rx_ring[ring_idx].fragments = new uint8_t*[fec_n];
for(int i=0; i < fec_n; i++)
{
rx_ring[ring_idx].fragments[i] = new uint8_t[MAX_FEC_PAYLOAD];
}
rx_ring[ring_idx].fragment_map = new uint8_t[fec_n];
memset(rx_ring[ring_idx].fragment_map, '\0', fec_n * sizeof(uint8_t));
}
FILE *fp;
if((fp = fopen(keypair.c_str(), "r")) == NULL)
{
throw runtime_error(string_format("Unable to open %s: %s", keypair.c_str(), strerror(errno)));
}
if (fread(rx_secretkey, crypto_box_SECRETKEYBYTES, 1, fp) != 1) throw runtime_error(string_format("Unable to read rx secret key: %s", strerror(errno)));
if (fread(tx_publickey, crypto_box_PUBLICKEYBYTES, 1, fp) != 1) throw runtime_error(string_format("Unable to read tx public key: %s", strerror(errno)));
fclose(fp);
}
Aggregator::~Aggregator()
{
for(int ring_idx = 0; ring_idx < RX_RING_SIZE; ring_idx++)
{
delete rx_ring[ring_idx].fragment_map;
for(int i=0; i < fec_n; i++)
{
delete rx_ring[ring_idx].fragments[i];
}
delete rx_ring[ring_idx].fragments;
}
close(sockfd);
}
Forwarder::Forwarder(const string &client_addr, int client_port)
{
sockfd = open_udp_socket_for_tx(client_addr, client_port);
}
void Forwarder::process_packet(const uint8_t *buf, size_t size, uint8_t wlan_idx, uint8_t antenna, uint8_t rssi, sockaddr_in *sockaddr)
{
wrxfwd_t fwd_hdr = { .wlan_idx = wlan_idx,
.antenna = antenna,
.rssi = rssi };
struct iovec iov[2] = {{ .iov_base = (void*)&fwd_hdr,
.iov_len = sizeof(fwd_hdr)},
{ .iov_base = (void*)buf,
.iov_len = size }};
struct msghdr msghdr = { .msg_name = NULL,
.msg_namelen = 0,
.msg_iov = iov,
.msg_iovlen = 2,
.msg_control = NULL,
.msg_controllen = 0,
.msg_flags = 0};
sendmsg(sockfd, &msghdr, 0);
}
Forwarder::~Forwarder()
{
close(sockfd);
}
int Aggregator::rx_ring_push(void)
{
if(rx_ring_alloc < RX_RING_SIZE)
{
int idx = modN(rx_ring_front + rx_ring_alloc, RX_RING_SIZE);
rx_ring_alloc += 1;
return idx;
}
// override existing data
int idx = rx_ring_front;
/*
Ring overflow. This means that there are more unfinished blocks than ring size
Possible solutions:
1. Increase ring size. Do this if you have large variance of packet travel time throught WiFi card or network stack.
Some cards can do this due to packet reordering inside, diffent chipset and/or firmware or your RX hosts have different CPU power.
2. Reduce packet injection speed or try to unify RX hardware.
*/
fprintf(stderr, "override block 0x%" PRIx64 " with %d fragments\n", rx_ring[idx].block_idx, rx_ring[idx].has_fragments);
rx_ring_front = modN(rx_ring_front + 1, RX_RING_SIZE);
return idx;
}
int Aggregator::get_block_ring_idx(uint64_t block_idx)
{
// check if block is already to the ring
for(int i = rx_ring_front, c = rx_ring_alloc; c > 0; i = modN(i + 1, RX_RING_SIZE), c--)
{
if (rx_ring[i].block_idx == block_idx) return i;
}
// check if block is already known and not in the ring then it is already processed
if (last_known_block != (uint64_t)-1 && block_idx <= last_known_block)
{
return -1;
}
int new_blocks = (int)min(last_known_block != (uint64_t)-1 ? block_idx - last_known_block : 1, (uint64_t)RX_RING_SIZE);
assert (new_blocks > 0);
last_known_block = block_idx;
int ring_idx = -1;
for(int i = 0; i < new_blocks; i++)
{
ring_idx = rx_ring_push();
rx_ring[ring_idx].block_idx = block_idx + i + 1 - new_blocks;
rx_ring[ring_idx].send_fragment_idx = 0;
rx_ring[ring_idx].has_fragments = 0;
memset(rx_ring[ring_idx].fragment_map, '\0', fec_n * sizeof(uint8_t));
}
return ring_idx;
}
void Aggregator::dump_stats(FILE *fp)
{
//timestamp in ms
uint64_t ts = get_time_ms();
for(antenna_stat_t::iterator it = antenna_stat.begin(); it != antenna_stat.end(); it++)
{
fprintf(fp, "%" PRIu64 "\tANT\t%" PRIx64 "\t%d:%d:%d:%d\n", ts, it->first, it->second.count_all, it->second.rssi_min, it->second.rssi_sum / it->second.count_all, it->second.rssi_max);
}
antenna_stat.clear();
fprintf(fp, "%" PRIu64 "\tPKT\t%u:%u:%u:%u:%u:%u\n", ts, count_p_all, count_p_dec_err, count_p_dec_ok, count_p_fec_recovered, count_p_lost, count_p_bad);
fflush(fp);
count_p_all = 0;
count_p_dec_err = 0;
count_p_dec_ok = 0;
count_p_fec_recovered = 0;
count_p_lost = 0;
count_p_bad = 0;
}
void Aggregator::log_rssi(const sockaddr_in *sockaddr, uint8_t wlan_idx, uint8_t ant, uint8_t rssi)
{
// key: addr + port + wlan_idx + ant
uint64_t key = 0;
if (sockaddr != NULL && sockaddr->sin_family == AF_INET)
{
key = ((uint64_t)ntohl(sockaddr->sin_addr.s_addr) << 32 | (uint64_t)ntohs(sockaddr->sin_port) << 16);
}
key |= ((uint64_t)wlan_idx << 8 | (uint64_t)ant);
antenna_stat[key].log_rssi(rssi);
}
void Aggregator::process_packet(const uint8_t *buf, size_t size, uint8_t wlan_idx, uint8_t antenna, uint8_t rssi, sockaddr_in *sockaddr)
{
uint8_t new_session_key[sizeof(session_key)];
count_p_all += 1;
if(size == 0) return;
if (size > MAX_FORWARDER_PACKET_SIZE)
{
fprintf(stderr, "long packet (fec payload)\n");
count_p_bad += 1;
return;
}
switch(buf[0])
{
case WFB_PACKET_DATA:
if(size < sizeof(wblock_hdr_t) + sizeof(wpacket_hdr_t))
{
fprintf(stderr, "short packet (fec header)\n");
count_p_bad += 1;
return;
}
break;
case WFB_PACKET_KEY:
if(size != sizeof(wsession_key_t))
{
fprintf(stderr, "invalid session key packet\n");
count_p_bad += 1;
return;
}
if(crypto_box_open_easy(new_session_key,
((wsession_key_t*)buf)->session_key_data, sizeof(wsession_key_t::session_key_data),
((wsession_key_t*)buf)->session_key_nonce,
tx_publickey, rx_secretkey) != 0)
{
fprintf(stderr, "unable to decrypt session key\n");
count_p_dec_err += 1;
return;
}
count_p_dec_ok += 1;
if (memcmp(session_key, new_session_key, sizeof(session_key)) != 0)
{
fprintf(stderr, "New session detected\n");
memcpy(session_key, new_session_key, sizeof(session_key));
rx_ring_front = 0;
rx_ring_alloc = 0;
last_known_block = (uint64_t)-1;
seq = 0;
for(int ring_idx = 0; ring_idx < RX_RING_SIZE; ring_idx++)
{
rx_ring[ring_idx].block_idx = 0;
rx_ring[ring_idx].send_fragment_idx = 0;
rx_ring[ring_idx].has_fragments = 0;
memset(rx_ring[ring_idx].fragment_map, '\0', fec_n * sizeof(uint8_t));
}
}
return;
default:
fprintf(stderr, "Unknown packet type 0x%x\n", buf[0]);
count_p_bad += 1;
return;
}
uint8_t decrypted[MAX_FEC_PAYLOAD];
long long unsigned int decrypted_len;
wblock_hdr_t *block_hdr = (wblock_hdr_t*)buf;
if (crypto_aead_chacha20poly1305_decrypt(decrypted, &decrypted_len,
NULL,
buf + sizeof(wblock_hdr_t), size - sizeof(wblock_hdr_t),
buf,
sizeof(wblock_hdr_t),
(uint8_t*)(&(block_hdr->nonce)), session_key) != 0)
{
fprintf(stderr, "unable to decrypt packet #0x%" PRIx64 "\n", be64toh(block_hdr->nonce));
count_p_dec_err += 1;
return;
}
count_p_dec_ok += 1;
log_rssi(sockaddr, wlan_idx, antenna, rssi);
assert(decrypted_len <= MAX_FEC_PAYLOAD);
uint64_t block_idx = be64toh(block_hdr->nonce) >> 8;
uint8_t fragment_idx = (uint8_t)(be64toh(block_hdr->nonce) & 0xff);
// Should never happend due to generating new session key on tx side
if (block_idx > MAX_BLOCK_IDX)
{
fprintf(stderr, "block_idx overflow\n");
count_p_bad += 1;
return;
}
if (fragment_idx >= fec_n)
{
fprintf(stderr, "invalid fragment_idx: %d\n", fragment_idx);
count_p_bad += 1;
return;
}
int ring_idx = get_block_ring_idx(block_idx);
//printf("got 0x%lx %d, ring_idx=%d\n", block_idx, fragment_idx, ring_idx);
//ignore already processed blocks
if (ring_idx < 0) return;
rx_ring_item_t *p = &rx_ring[ring_idx];
//ignore already processed fragments
if (p->fragment_map[fragment_idx]) return;
memset(p->fragments[fragment_idx], '\0', MAX_FEC_PAYLOAD);
memcpy(p->fragments[fragment_idx], decrypted, decrypted_len);
p->fragment_map[fragment_idx] = 1;
p->has_fragments += 1;
if(ring_idx == rx_ring_front)
{
// check if any packets without gaps
while(p->send_fragment_idx < fec_k && p->fragment_map[p->send_fragment_idx])
{
send_packet(ring_idx, p->send_fragment_idx);
p->send_fragment_idx += 1;
}
}
// or we can reconstruct gaps via FEC
if(p->send_fragment_idx < fec_k && p->has_fragments == fec_k)
{
//printf("do fec\n");
apply_fec(ring_idx);
while(p->send_fragment_idx < fec_k)
{
count_p_fec_recovered += 1;
send_packet(ring_idx, p->send_fragment_idx);
p->send_fragment_idx += 1;
}
}
if(p->send_fragment_idx == fec_k)
{
int nrm = modN(ring_idx - rx_ring_front, RX_RING_SIZE);
for(int i=0; i <= nrm; i++)
{
rx_ring_front = modN(rx_ring_front + 1, RX_RING_SIZE);
rx_ring_alloc -= 1;
}
assert(rx_ring_alloc >= 0);
}
}
void Aggregator::send_packet(int ring_idx, int fragment_idx)
{
wpacket_hdr_t* packet_hdr = (wpacket_hdr_t*)(rx_ring[ring_idx].fragments[fragment_idx]);
uint8_t *payload = (rx_ring[ring_idx].fragments[fragment_idx]) + sizeof(wpacket_hdr_t);
uint16_t packet_size = be16toh(packet_hdr->packet_size);
uint32_t packet_seq = rx_ring[ring_idx].block_idx * fec_k + fragment_idx;
if (packet_seq > seq + 1)
{
fprintf(stderr, "%u packets lost\n", packet_seq - seq - 1);
count_p_lost += (packet_seq - seq - 1);
}
seq = packet_seq;
if(packet_size > MAX_PAYLOAD_SIZE)
{
fprintf(stderr, "corrupted packet %u\n", seq);
count_p_bad += 1;
}else{
send(sockfd, payload, packet_size, 0);
}
}
void Aggregator::apply_fec(int ring_idx)
{
unsigned index[fec_k];
uint8_t *in_blocks[fec_k];
uint8_t *out_blocks[fec_n - fec_k];
int j = fec_k;
int ob_idx = 0;
for(int i=0; i < fec_k; i++)
{
if(rx_ring[ring_idx].fragment_map[i])
{
in_blocks[i] = rx_ring[ring_idx].fragments[i];
index[i] = i;
}else
{
for(;j < fec_n; j++)
{
if(rx_ring[ring_idx].fragment_map[j])
{
in_blocks[i] = rx_ring[ring_idx].fragments[j];
out_blocks[ob_idx++] = rx_ring[ring_idx].fragments[i];
index[i] = j;
j++;
break;
}
}
}
}
fec_decode(fec_p, (const uint8_t**)in_blocks, out_blocks, index, MAX_FEC_PAYLOAD);
}
void radio_loop(int argc, char* const *argv, int optind, int radio_port, shared_ptr<BaseAggregator> agg, int log_interval)
{
int nfds = min(argc - optind, MAX_RX_INTERFACES);
uint64_t log_send_ts = 0;
struct pollfd fds[MAX_RX_INTERFACES];
Receiver* rx[MAX_RX_INTERFACES];
memset(fds, '\0', sizeof(fds));
for(int i = 0; i < nfds; i++)
{
rx[i] = new Receiver(argv[optind + i], i, radio_port, agg.get());
fds[i].fd = rx[i]->getfd();
fds[i].events = POLLIN;
}
for(;;)
{
uint64_t cur_ts = get_time_ms();
int rc = poll(fds, nfds, log_send_ts > cur_ts ? log_send_ts - cur_ts : 0);
if (rc < 0){
if (errno == EINTR || errno == EAGAIN) continue;
throw runtime_error(string_format("Poll error: %s", strerror(errno)));
}
cur_ts = get_time_ms();
if (cur_ts >= log_send_ts)
{
agg->dump_stats(stdout);
log_send_ts = get_time_ms() + log_interval;
}
if (rc == 0) continue; // timeout expired
for(int i = 0; rc > 0 && i < nfds; i++)
{
if (fds[i].revents & (POLLERR|POLLNVAL))
{
throw runtime_error("socket error!");
}
if (fds[i].revents & POLLIN){
rx[i]->loop_iter();
rc -= 1;
}
}
}
}
void network_loop(int srv_port, Aggregator &agg, int log_interval)
{
wrxfwd_t fwd_hdr;
struct sockaddr_in sockaddr;
uint8_t buf[MAX_FORWARDER_PACKET_SIZE];
uint64_t log_send_ts = 0;
struct pollfd fds[1];
int fd = open_udp_socket_for_rx(srv_port);
if(fcntl(fd, F_SETFL, fcntl(fd, F_GETFL, 0) | O_NONBLOCK) < 0)
{
throw runtime_error(string_format("Unable to set socket into nonblocked mode: %s", strerror(errno)));
}
memset(fds, '\0', sizeof(fds));
fds[0].fd = fd;
fds[0].events = POLLIN;
for(;;)
{
uint64_t cur_ts = get_time_ms();
int rc = poll(fds, 1, log_send_ts > cur_ts ? log_send_ts - cur_ts : 0);
if (rc < 0){
if (errno == EINTR || errno == EAGAIN) continue;
throw runtime_error(string_format("poll error: %s", strerror(errno)));
}
cur_ts = get_time_ms();
if (cur_ts >= log_send_ts)
{
agg.dump_stats(stdout);
log_send_ts = get_time_ms() + log_interval;
}
if (rc == 0) continue; // timeout expired
// some events detected
if (fds[0].revents & (POLLERR | POLLNVAL))
{
throw runtime_error(string_format("socket error: %s", strerror(errno)));
}
if (fds[0].revents & POLLIN)
{
for(;;) // process pending rx
{
memset((void*)&sockaddr, '\0', sizeof(sockaddr));
struct iovec iov[2] = {{ .iov_base = (void*)&fwd_hdr,
.iov_len = sizeof(fwd_hdr)},
{ .iov_base = (void*)buf,
.iov_len = sizeof(buf) }};
struct msghdr msghdr = { .msg_name = (void*)&sockaddr,
.msg_namelen = sizeof(sockaddr),
.msg_iov = iov,
.msg_iovlen = 2,
.msg_control = NULL,
.msg_controllen = 0,
.msg_flags = 0};
ssize_t rsize = recvmsg(fd, &msghdr, 0);
if (rsize < 0)
{
break;
}
if (rsize < sizeof(wrxfwd_t))
{
fprintf(stderr, "short packet (rx fwd header)\n");
continue;
}
agg.process_packet(buf, rsize - sizeof(wrxfwd_t), fwd_hdr.wlan_idx, fwd_hdr.antenna, fwd_hdr.rssi, &sockaddr);
}
if(errno != EWOULDBLOCK) throw runtime_error(string_format("Error receiving packet: %s", strerror(errno)));
}
}
}
int main(int argc, char* const *argv)
{
int opt;
uint8_t k = 8, n = 12, radio_port = 1;
int log_interval = 1000;
int client_port = 5600;
int srv_port = 0;
string client_addr = "127.0.0.1";
rx_mode_t rx_mode = LOCAL;
string keypair = "rx.key";
while ((opt = getopt(argc, argv, "K:fa:k:n:c:u:p:l:")) != -1) {
switch (opt) {
case 'K':
keypair = optarg;
break;
case 'f':
rx_mode = FORWARDER;
break;
case 'a':
rx_mode = AGGREGATOR;
srv_port = atoi(optarg);
break;
case 'k':
k = atoi(optarg);
break;
case 'n':
n = atoi(optarg);
break;
case 'c':
client_addr = string(optarg);
break;
case 'u':
client_port = atoi(optarg);
break;
case 'p':
radio_port = atoi(optarg);
break;
case 'l':
log_interval = atoi(optarg);
break;
default: /* '?' */
show_usage:
fprintf(stderr, "Local receiver: %s [-K rx_key] [-k RS_K] [-n RS_N] [-c client_addr] [-u client_port] [-p radio_port] [-l log_interval] interface1 [interface2] ...\n", argv[0]);
fprintf(stderr, "Remote (forwarder): %s -f [-c client_addr] [-u client_port] [-p radio_port] interface1 [interface2] ...\n", argv[0]);
fprintf(stderr, "Remote (aggregator): %s -a server_port [-K rx_key] [-k RS_K] [-n RS_N] [-c client_addr] [-u client_port] [-l log_interval]\n", argv[0]);
fprintf(stderr, "Default: K='%s', k=%d, n=%d, connect=%s:%d, radio_port=%d, log_interval=%d\n", keypair.c_str(), k, n, client_addr.c_str(), client_port, radio_port, log_interval);
exit(1);
}
}
try
{
if (rx_mode == LOCAL || rx_mode == FORWARDER)
{
if (optind >= argc) goto show_usage;
shared_ptr<BaseAggregator> agg;
if(rx_mode == LOCAL){
agg = shared_ptr<Aggregator>(new Aggregator(client_addr, client_port, k, n, keypair));
}else{
agg = shared_ptr<Forwarder>(new Forwarder(client_addr, client_port));
}
radio_loop(argc, argv, optind, radio_port, agg, log_interval);
}else if(rx_mode == AGGREGATOR)
{
if (optind > argc) goto show_usage;
Aggregator agg(client_addr, client_port, k, n, keypair);
network_loop(srv_port, agg, log_interval);
}else{
throw runtime_error(string_format("Unknown rx_mode=%d", rx_mode));
}
}catch(runtime_error &e)
{
fprintf(stderr, "Error: %s\n", e.what());
exit(1);
}
return 0;
}