forked from pomonam/LearnablePoolingMethods
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodule_utils.py
106 lines (89 loc) · 4.12 KB
/
module_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
# Copyright 2018 Deep Topology All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS-IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from tensorflow.python.platform import tf_logging as logging
from tensorflow.python.ops import standard_ops
from tensorflow.python.framework import ops
import tensorflow as tf
import numbers
_NEG_INF = -1e9
def get_padding(x, padding_value=0):
"""Return float tensor representing the padding values in x.
Args:
x: int tensor with any shape
padding_value: int value that
Returns:
flaot tensor with same shape as x containing values 0 or 1.
0 -> non-padding, 1 -> padding
"""
with tf.name_scope("padding"):
return tf.to_float(tf.equal(x, padding_value))
def get_padding_bias(x):
"""Calculate bias tensor from padding values in tensor.
Bias tensor that is added to the pre-softmax multi-headed attention logits,
which has shape [batch_size, num_heads, length, length]. The tensor is zero at
non-padding locations, and -1e9 (negative infinity) at padding locations.
Args:
x: int tensor with shape [batch_size, length]
Returns:
Attention bias tensor of shape [batch_size, 1, 1, length].
"""
with tf.name_scope("attention_bias"):
padding = get_padding(x)
attention_bias = padding * _NEG_INF
attention_bias = tf.expand_dims(
tf.expand_dims(attention_bias, axis=1), axis=1)
return attention_bias
def orthogonal_regularizer(scale, scope=None):
""" Return a function that computes orthogonal regularization.
:param scale: A scalar multiplier `Tensor`. 0.0 disables the regularizer.
:param scope: An optional scope name.
:return: A function with signature `orthogonal_sum(weights)` that applies orthogonal regularization.
"""
if isinstance(scale, numbers.Integral):
raise ValueError('scale cannot be an integer: %s' % (scale,))
if isinstance(scale, numbers.Real):
if scale < 0.:
raise ValueError('Setting a scale less than 0 on a regularizer: %g.' %
scale)
if scale == 0.:
logging.info('Scale of 0 disables regularizer.')
return lambda _: None
def orthogonal_sum(weights):
""" Applies orthogonal regularization to weights. """
with ops.name_scope(scope, 'orthogonal_regularizer', [weights]) as name:
tensor_scale = ops.convert_to_tensor(scale,
dtype=weights.dtype.base_dtype,
name='scale')
norm_weights = tf.nn.l2_normalize(weights, axis=1)
anchor_weights_t = tf.transpose(norm_weights)
det_reg = tf.matmul(anchor_weights_t, norm_weights)
identity = tf.eye(tf.shape(det_reg)[0])
det_reg = tf.subtract(det_reg, identity)
det_reg = tf.reduce_sum(tf.abs(det_reg))
# Print sum value before scaling
det_reg = tf.Print(det_reg, [det_reg], "Orthogonal sum for \"{}\" :".format(name))
return standard_ops.multiply(tensor_scale, det_reg, name=name)
return orthogonal_sum
def reduce_var(x, axis=None, keep_dim=False):
""" Return variance of a tensor, alongside the specified axis.
Reference:
https://stackoverflow.com/questions/39354566/what-is-the-equivalent-of-np-std-in-tensorflow
:param x: Tensor or variable
:param axis: int
:param keep_dim: bool
:return: Tensor with the variance of elements of x
"""
m = tf.reduce_mean(x, axis=axis, keep_dims=True)
devs_squared = tf.square(x - m)
return tf.reduce_mean(devs_squared, axis=axis, keep_dims=keep_dim)