forked from rupeshs/fastsdcpu
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
534 lines (496 loc) · 15.3 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
import json
from argparse import ArgumentParser
import constants
from backend.controlnet import controlnet_settings_from_dict
from backend.models.gen_images import ImageFormat
from backend.models.lcmdiffusion_setting import DiffusionTask
from backend.upscale.tiled_upscale import generate_upscaled_image
from constants import APP_VERSION, DEVICE
from frontend.webui.image_variations_ui import generate_image_variations
from models.interface_types import InterfaceType
from paths import FastStableDiffusionPaths
from PIL import Image
from state import get_context, get_settings
from utils import show_system_info
from backend.device import get_device_name
parser = ArgumentParser(description=f"FAST SD CPU {constants.APP_VERSION}")
parser.add_argument(
"-s",
"--share",
action="store_true",
help="Create sharable link(Web UI)",
required=False,
)
group = parser.add_mutually_exclusive_group(required=False)
group.add_argument(
"-g",
"--gui",
action="store_true",
help="Start desktop GUI",
)
group.add_argument(
"-w",
"--webui",
action="store_true",
help="Start Web UI",
)
group.add_argument(
"-a",
"--api",
action="store_true",
help="Start Web API server",
)
group.add_argument(
"-r",
"--realtime",
action="store_true",
help="Start realtime inference UI(experimental)",
)
group.add_argument(
"-v",
"--version",
action="store_true",
help="Version",
)
parser.add_argument(
"-b",
"--benchmark",
action="store_true",
help="Run inference benchmark on the selected device",
)
parser.add_argument(
"--lcm_model_id",
type=str,
help="Model ID or path,Default stabilityai/sd-turbo",
default="stabilityai/sd-turbo",
)
parser.add_argument(
"--openvino_lcm_model_id",
type=str,
help="OpenVINO Model ID or path,Default rupeshs/sd-turbo-openvino",
default="rupeshs/sd-turbo-openvino",
)
parser.add_argument(
"--prompt",
type=str,
help="Describe the image you want to generate",
default="",
)
parser.add_argument(
"--negative_prompt",
type=str,
help="Describe what you want to exclude from the generation",
default="",
)
parser.add_argument(
"--image_height",
type=int,
help="Height of the image",
default=512,
)
parser.add_argument(
"--image_width",
type=int,
help="Width of the image",
default=512,
)
parser.add_argument(
"--inference_steps",
type=int,
help="Number of steps,default : 1",
default=1,
)
parser.add_argument(
"--guidance_scale",
type=float,
help="Guidance scale,default : 1.0",
default=1.0,
)
parser.add_argument(
"--number_of_images",
type=int,
help="Number of images to generate ,default : 1",
default=1,
)
parser.add_argument(
"--seed",
type=int,
help="Seed,default : -1 (disabled) ",
default=-1,
)
parser.add_argument(
"--use_openvino",
action="store_true",
help="Use OpenVINO model",
)
parser.add_argument(
"--use_offline_model",
action="store_true",
help="Use offline model",
)
parser.add_argument(
"--clip_skip",
type=int,
help="CLIP Skip (1-12), default : 1 (disabled) ",
default=1,
)
parser.add_argument(
"--token_merging",
type=float,
help="Token merging scale, 0.0 - 1.0, default : 0.0",
default=0.0,
)
parser.add_argument(
"--use_safety_checker",
action="store_true",
help="Use safety checker",
)
parser.add_argument(
"--use_lcm_lora",
action="store_true",
help="Use LCM-LoRA",
)
parser.add_argument(
"--base_model_id",
type=str,
help="LCM LoRA base model ID,Default Lykon/dreamshaper-8",
default="Lykon/dreamshaper-8",
)
parser.add_argument(
"--lcm_lora_id",
type=str,
help="LCM LoRA model ID,Default latent-consistency/lcm-lora-sdv1-5",
default="latent-consistency/lcm-lora-sdv1-5",
)
parser.add_argument(
"-i",
"--interactive",
action="store_true",
help="Interactive CLI mode",
)
parser.add_argument(
"-t",
"--use_tiny_auto_encoder",
action="store_true",
help="Use tiny auto encoder for SD (TAESD)",
)
parser.add_argument(
"-f",
"--file",
type=str,
help="Input image for img2img mode",
default="",
)
parser.add_argument(
"--img2img",
action="store_true",
help="img2img mode; requires input file via -f argument",
)
parser.add_argument(
"--batch_count",
type=int,
help="Number of sequential generations",
default=1,
)
parser.add_argument(
"--strength",
type=float,
help="Denoising strength for img2img and Image variations",
default=0.3,
)
parser.add_argument(
"--sdupscale",
action="store_true",
help="Tiled SD upscale,works only for the resolution 512x512,(2x upscale)",
)
parser.add_argument(
"--upscale",
action="store_true",
help="EDSR SD upscale ",
)
parser.add_argument(
"--custom_settings",
type=str,
help="JSON file containing custom generation settings",
default=None,
)
parser.add_argument(
"--usejpeg",
action="store_true",
help="Images will be saved as JPEG format",
)
parser.add_argument(
"--noimagesave",
action="store_true",
help="Disable image saving",
)
parser.add_argument(
"--lora",
type=str,
help="LoRA model full path e.g D:\lora_models\CuteCartoon15V-LiberteRedmodModel-Cartoon-CuteCartoonAF.safetensors",
default=None,
)
parser.add_argument(
"--lora_weight",
type=float,
help="LoRA adapter weight [0 to 1.0]",
default=0.5,
)
parser.add_argument(
"--port",
type=int,
help="Web server port",
default=8000,
)
args = parser.parse_args()
if args.version:
print(APP_VERSION)
exit()
# parser.print_help()
show_system_info()
print(f"Using device : {constants.DEVICE}")
if args.webui:
app_settings = get_settings()
else:
app_settings = get_settings()
print(f"Found {len(app_settings.lcm_models)} LCM models in config/lcm-models.txt")
print(
f"Found {len(app_settings.stable_diffsuion_models)} stable diffusion models in config/stable-diffusion-models.txt"
)
print(
f"Found {len(app_settings.lcm_lora_models)} LCM-LoRA models in config/lcm-lora-models.txt"
)
print(
f"Found {len(app_settings.openvino_lcm_models)} OpenVINO LCM models in config/openvino-lcm-models.txt"
)
if args.noimagesave:
app_settings.settings.generated_images.save_image = False
else:
app_settings.settings.generated_images.save_image = True
if not args.realtime:
# To minimize realtime mode dependencies
from backend.upscale.upscaler import upscale_image
from frontend.cli_interactive import interactive_mode
if args.gui:
from frontend.gui.ui import start_gui
print("Starting desktop GUI mode(Qt)")
start_gui(
[],
app_settings,
)
elif args.webui:
from frontend.webui.ui import start_webui
print("Starting web UI mode")
start_webui(
args.share,
)
elif args.realtime:
from frontend.webui.realtime_ui import start_realtime_text_to_image
print("Starting realtime text to image(EXPERIMENTAL)")
start_realtime_text_to_image(args.share)
elif args.api:
from backend.api.web import start_web_server
start_web_server(args.port)
else:
context = get_context(InterfaceType.CLI)
config = app_settings.settings
if args.use_openvino:
config.lcm_diffusion_setting.openvino_lcm_model_id = args.openvino_lcm_model_id
else:
config.lcm_diffusion_setting.lcm_model_id = args.lcm_model_id
config.lcm_diffusion_setting.prompt = args.prompt
config.lcm_diffusion_setting.negative_prompt = args.negative_prompt
config.lcm_diffusion_setting.image_height = args.image_height
config.lcm_diffusion_setting.image_width = args.image_width
config.lcm_diffusion_setting.guidance_scale = args.guidance_scale
config.lcm_diffusion_setting.number_of_images = args.number_of_images
config.lcm_diffusion_setting.inference_steps = args.inference_steps
config.lcm_diffusion_setting.strength = args.strength
config.lcm_diffusion_setting.seed = args.seed
config.lcm_diffusion_setting.use_openvino = args.use_openvino
config.lcm_diffusion_setting.use_tiny_auto_encoder = args.use_tiny_auto_encoder
config.lcm_diffusion_setting.use_lcm_lora = args.use_lcm_lora
config.lcm_diffusion_setting.lcm_lora.base_model_id = args.base_model_id
config.lcm_diffusion_setting.lcm_lora.lcm_lora_id = args.lcm_lora_id
config.lcm_diffusion_setting.diffusion_task = DiffusionTask.text_to_image.value
config.lcm_diffusion_setting.lora.enabled = False
config.lcm_diffusion_setting.lora.path = args.lora
config.lcm_diffusion_setting.lora.weight = args.lora_weight
config.lcm_diffusion_setting.lora.fuse = True
if config.lcm_diffusion_setting.lora.path:
config.lcm_diffusion_setting.lora.enabled = True
if args.usejpeg:
config.generated_images.format = ImageFormat.JPEG.value.upper()
if args.seed > -1:
config.lcm_diffusion_setting.use_seed = True
else:
config.lcm_diffusion_setting.use_seed = False
config.lcm_diffusion_setting.use_offline_model = args.use_offline_model
config.lcm_diffusion_setting.clip_skip = args.clip_skip
config.lcm_diffusion_setting.token_merging = args.token_merging
config.lcm_diffusion_setting.use_safety_checker = args.use_safety_checker
# Read custom settings from JSON file
custom_settings = {}
if args.custom_settings:
with open(args.custom_settings) as f:
custom_settings = json.load(f)
# Basic ControlNet settings; if ControlNet is enabled, an image is
# required even in txt2img mode
config.lcm_diffusion_setting.controlnet = None
controlnet_settings_from_dict(
config.lcm_diffusion_setting,
custom_settings,
)
# Interactive mode
if args.interactive:
# wrapper(interactive_mode, config, context)
config.lcm_diffusion_setting.lora.fuse = False
interactive_mode(config, context)
# Start of non-interactive CLI image generation
if args.img2img and args.file != "":
config.lcm_diffusion_setting.init_image = Image.open(args.file)
config.lcm_diffusion_setting.diffusion_task = DiffusionTask.image_to_image.value
elif args.img2img and args.file == "":
print("Error : You need to specify a file in img2img mode")
exit()
elif args.upscale and args.file == "" and args.custom_settings == None:
print("Error : You need to specify a file in SD upscale mode")
exit()
elif (
args.prompt == ""
and args.file == ""
and args.custom_settings == None
and not args.benchmark
):
print("Error : You need to provide a prompt")
exit()
if args.upscale:
# image = Image.open(args.file)
output_path = FastStableDiffusionPaths.get_upscale_filepath(
args.file,
2,
config.generated_images.format,
)
result = upscale_image(
context,
args.file,
output_path,
2,
)
# Perform Tiled SD upscale (EXPERIMENTAL)
elif args.sdupscale:
if args.use_openvino:
config.lcm_diffusion_setting.strength = 0.3
upscale_settings = None
if custom_settings != {}:
upscale_settings = custom_settings
filepath = args.file
output_format = config.generated_images.format
if upscale_settings:
filepath = upscale_settings["source_file"]
output_format = upscale_settings["output_format"].upper()
output_path = FastStableDiffusionPaths.get_upscale_filepath(
filepath,
2,
output_format,
)
generate_upscaled_image(
config,
filepath,
config.lcm_diffusion_setting.strength,
upscale_settings=upscale_settings,
context=context,
tile_overlap=32 if config.lcm_diffusion_setting.use_openvino else 16,
output_path=output_path,
image_format=output_format,
)
exit()
# If img2img argument is set and prompt is empty, use image variations mode
elif args.img2img and args.prompt == "":
for i in range(0, args.batch_count):
generate_image_variations(
config.lcm_diffusion_setting.init_image, args.strength
)
else:
if args.benchmark:
print("Initializing benchmark...")
bench_lcm_setting = config.lcm_diffusion_setting
bench_lcm_setting.prompt = "a cat"
bench_lcm_setting.use_tiny_auto_encoder = False
context.generate_text_to_image(
settings=config,
device=DEVICE,
)
latencies = []
print("Starting benchmark please wait...")
for _ in range(3):
context.generate_text_to_image(
settings=config,
device=DEVICE,
)
latencies.append(context.latency)
avg_latency = sum(latencies) / 3
bench_lcm_setting.use_tiny_auto_encoder = True
context.generate_text_to_image(
settings=config,
device=DEVICE,
)
latencies = []
for _ in range(3):
context.generate_text_to_image(
settings=config,
device=DEVICE,
)
latencies.append(context.latency)
avg_latency_taesd = sum(latencies) / 3
benchmark_name = ""
if config.lcm_diffusion_setting.use_openvino:
benchmark_name = "OpenVINO"
else:
benchmark_name = "PyTorch"
bench_model_id = ""
if bench_lcm_setting.use_openvino:
bench_model_id = bench_lcm_setting.openvino_lcm_model_id
elif bench_lcm_setting.use_lcm_lora:
bench_model_id = bench_lcm_setting.lcm_lora.base_model_id
else:
bench_model_id = bench_lcm_setting.lcm_model_id
benchmark_result = [
["Device", f"{DEVICE.upper()},{get_device_name()}"],
["Stable Diffusion Model", bench_model_id],
[
"Image Size ",
f"{bench_lcm_setting.image_width}x{bench_lcm_setting.image_height}",
],
[
"Inference Steps",
f"{bench_lcm_setting.inference_steps}",
],
[
"Benchmark Passes",
3,
],
[
"Average Latency",
f"{round(avg_latency,3)} sec",
],
[
"Average Latency(TAESD* enabled)",
f"{round(avg_latency_taesd,3)} sec",
],
]
print()
print(
f" FastSD Benchmark - {benchmark_name:8} "
)
print(f"-" * 80)
for benchmark in benchmark_result:
print(f"{benchmark[0]:35} - {benchmark[1]}")
print(f"-" * 80)
print("*TAESD - Tiny AutoEncoder for Stable Diffusion")
else:
for i in range(0, args.batch_count):
context.generate_text_to_image(
settings=config,
device=DEVICE,
)