forked from NVIDIA/semantic-segmentation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathocrnet.py
342 lines (282 loc) · 12.5 KB
/
ocrnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
"""
Copyright 2020 Nvidia Corporation
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
3. Neither the name of the copyright holder nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
"""
from torch import nn
from network.mynn import initialize_weights, Upsample, scale_as
from network.mynn import ResizeX
from network.utils import get_trunk
from network.utils import BNReLU, get_aspp
from network.utils import make_attn_head
from network.ocr_utils import SpatialGather_Module, SpatialOCR_Module
from config import cfg
from utils.misc import fmt_scale
class OCR_block(nn.Module):
"""
Some of the code in this class is borrowed from:
https://github.com/HRNet/HRNet-Semantic-Segmentation/tree/HRNet-OCR
"""
def __init__(self, high_level_ch):
super(OCR_block, self).__init__()
ocr_mid_channels = cfg.MODEL.OCR.MID_CHANNELS
ocr_key_channels = cfg.MODEL.OCR.KEY_CHANNELS
num_classes = cfg.DATASET.NUM_CLASSES
self.conv3x3_ocr = nn.Sequential(
nn.Conv2d(high_level_ch, ocr_mid_channels,
kernel_size=3, stride=1, padding=1),
BNReLU(ocr_mid_channels),
)
self.ocr_gather_head = SpatialGather_Module(num_classes)
self.ocr_distri_head = SpatialOCR_Module(in_channels=ocr_mid_channels,
key_channels=ocr_key_channels,
out_channels=ocr_mid_channels,
scale=1,
dropout=0.05,
)
self.cls_head = nn.Conv2d(
ocr_mid_channels, num_classes, kernel_size=1, stride=1, padding=0,
bias=True)
self.aux_head = nn.Sequential(
nn.Conv2d(high_level_ch, high_level_ch,
kernel_size=1, stride=1, padding=0),
BNReLU(high_level_ch),
nn.Conv2d(high_level_ch, num_classes,
kernel_size=1, stride=1, padding=0, bias=True)
)
if cfg.OPTIONS.INIT_DECODER:
initialize_weights(self.conv3x3_ocr,
self.ocr_gather_head,
self.ocr_distri_head,
self.cls_head,
self.aux_head)
def forward(self, high_level_features):
feats = self.conv3x3_ocr(high_level_features)
aux_out = self.aux_head(high_level_features)
context = self.ocr_gather_head(feats, aux_out)
ocr_feats = self.ocr_distri_head(feats, context)
cls_out = self.cls_head(ocr_feats)
return cls_out, aux_out, ocr_feats
class OCRNet(nn.Module):
"""
OCR net
"""
def __init__(self, num_classes, trunk='hrnetv2', criterion=None):
super(OCRNet, self).__init__()
self.criterion = criterion
self.backbone, _, _, high_level_ch = get_trunk(trunk)
self.ocr = OCR_block(high_level_ch)
def forward(self, inputs):
assert 'images' in inputs
x = inputs['images']
_, _, high_level_features = self.backbone(x)
cls_out, aux_out, _ = self.ocr(high_level_features)
aux_out = scale_as(aux_out, x)
cls_out = scale_as(cls_out, x)
if self.training:
gts = inputs['gts']
aux_loss = self.criterion(aux_out, gts,
do_rmi=cfg.LOSS.OCR_AUX_RMI)
main_loss = self.criterion(cls_out, gts)
loss = cfg.LOSS.OCR_ALPHA * aux_loss + main_loss
return loss
else:
output_dict = {'pred': cls_out}
return output_dict
class OCRNetASPP(nn.Module):
"""
OCR net
"""
def __init__(self, num_classes, trunk='hrnetv2', criterion=None):
super(OCRNetASPP, self).__init__()
self.criterion = criterion
self.backbone, _, _, high_level_ch = get_trunk(trunk)
self.aspp, aspp_out_ch = get_aspp(high_level_ch,
bottleneck_ch=256,
output_stride=8)
self.ocr = OCR_block(aspp_out_ch)
def forward(self, inputs):
assert 'images' in inputs
x = inputs['images']
_, _, high_level_features = self.backbone(x)
aspp = self.aspp(high_level_features)
cls_out, aux_out, _ = self.ocr(aspp)
aux_out = scale_as(aux_out, x)
cls_out = scale_as(cls_out, x)
if self.training:
gts = inputs['gts']
loss = cfg.LOSS.OCR_ALPHA * self.criterion(aux_out, gts) + \
self.criterion(cls_out, gts)
return loss
else:
output_dict = {'pred': cls_out}
return output_dict
class MscaleOCR(nn.Module):
"""
OCR net
"""
def __init__(self, num_classes, trunk='hrnetv2', criterion=None):
super(MscaleOCR, self).__init__()
self.criterion = criterion
self.backbone, _, _, high_level_ch = get_trunk(trunk)
self.ocr = OCR_block(high_level_ch)
self.scale_attn = make_attn_head(
in_ch=cfg.MODEL.OCR.MID_CHANNELS, out_ch=1)
def _fwd(self, x):
x_size = x.size()[2:]
_, _, high_level_features = self.backbone(x)
cls_out, aux_out, ocr_mid_feats = self.ocr(high_level_features)
attn = self.scale_attn(ocr_mid_feats)
aux_out = Upsample(aux_out, x_size)
cls_out = Upsample(cls_out, x_size)
attn = Upsample(attn, x_size)
return {'cls_out': cls_out,
'aux_out': aux_out,
'logit_attn': attn}
def nscale_forward(self, inputs, scales):
"""
Hierarchical attention, primarily used for getting best inference
results.
We use attention at multiple scales, giving priority to the lower
resolutions. For example, if we have 4 scales {0.5, 1.0, 1.5, 2.0},
then evaluation is done as follows:
p_joint = attn_1.5 * p_1.5 + (1 - attn_1.5) * down(p_2.0)
p_joint = attn_1.0 * p_1.0 + (1 - attn_1.0) * down(p_joint)
p_joint = up(attn_0.5 * p_0.5) * (1 - up(attn_0.5)) * p_joint
The target scale is always 1.0, and 1.0 is expected to be part of the
list of scales. When predictions are done at greater than 1.0 scale,
the predictions are downsampled before combining with the next lower
scale.
Inputs:
scales - a list of scales to evaluate
inputs - dict containing 'images', the input, and 'gts', the ground
truth mask
Output:
If training, return loss, else return prediction + attention
"""
x_1x = inputs['images']
assert 1.0 in scales, 'expected 1.0 to be the target scale'
# Lower resolution provides attention for higher rez predictions,
# so we evaluate in order: high to low
scales = sorted(scales, reverse=True)
pred = None
aux = None
output_dict = {}
for s in scales:
x = ResizeX(x_1x, s)
outs = self._fwd(x)
cls_out = outs['cls_out']
attn_out = outs['logit_attn']
aux_out = outs['aux_out']
output_dict[fmt_scale('pred', s)] = cls_out
if s != 2.0:
output_dict[fmt_scale('attn', s)] = attn_out
if pred is None:
pred = cls_out
aux = aux_out
elif s >= 1.0:
# downscale previous
pred = scale_as(pred, cls_out)
pred = attn_out * cls_out + (1 - attn_out) * pred
aux = scale_as(aux, cls_out)
aux = attn_out * aux_out + (1 - attn_out) * aux
else:
# s < 1.0: upscale current
cls_out = attn_out * cls_out
aux_out = attn_out * aux_out
cls_out = scale_as(cls_out, pred)
aux_out = scale_as(aux_out, pred)
attn_out = scale_as(attn_out, pred)
pred = cls_out + (1 - attn_out) * pred
aux = aux_out + (1 - attn_out) * aux
if self.training:
assert 'gts' in inputs
gts = inputs['gts']
loss = cfg.LOSS.OCR_ALPHA * self.criterion(aux, gts) + \
self.criterion(pred, gts)
return loss
else:
output_dict['pred'] = pred
return output_dict
def two_scale_forward(self, inputs):
"""
Do we supervised both aux outputs, lo and high scale?
Should attention be used to combine the aux output?
Normally we only supervise the combined 1x output
If we use attention to combine the aux outputs, then
we can use normal weighting for aux vs. cls outputs
"""
assert 'images' in inputs
x_1x = inputs['images']
x_lo = ResizeX(x_1x, cfg.MODEL.MSCALE_LO_SCALE)
lo_outs = self._fwd(x_lo)
pred_05x = lo_outs['cls_out']
p_lo = pred_05x
aux_lo = lo_outs['aux_out']
logit_attn = lo_outs['logit_attn']
attn_05x = logit_attn
hi_outs = self._fwd(x_1x)
pred_10x = hi_outs['cls_out']
p_1x = pred_10x
aux_1x = hi_outs['aux_out']
p_lo = logit_attn * p_lo
aux_lo = logit_attn * aux_lo
p_lo = scale_as(p_lo, p_1x)
aux_lo = scale_as(aux_lo, p_1x)
logit_attn = scale_as(logit_attn, p_1x)
# combine lo and hi predictions with attention
joint_pred = p_lo + (1 - logit_attn) * p_1x
joint_aux = aux_lo + (1 - logit_attn) * aux_1x
if self.training:
gts = inputs['gts']
do_rmi = cfg.LOSS.OCR_AUX_RMI
aux_loss = self.criterion(joint_aux, gts, do_rmi=do_rmi)
# Optionally turn off RMI loss for first epoch to try to work
# around cholesky errors of singular matrix
do_rmi_main = True # cfg.EPOCH > 0
main_loss = self.criterion(joint_pred, gts, do_rmi=do_rmi_main)
loss = cfg.LOSS.OCR_ALPHA * aux_loss + main_loss
# Optionally, apply supervision to the multi-scale predictions
# directly. Turn off RMI to keep things lightweight
if cfg.LOSS.SUPERVISED_MSCALE_WT:
scaled_pred_05x = scale_as(pred_05x, p_1x)
loss_lo = self.criterion(scaled_pred_05x, gts, do_rmi=False)
loss_hi = self.criterion(pred_10x, gts, do_rmi=False)
loss += cfg.LOSS.SUPERVISED_MSCALE_WT * loss_lo
loss += cfg.LOSS.SUPERVISED_MSCALE_WT * loss_hi
return loss
else:
output_dict = {
'pred': joint_pred,
'pred_05x': pred_05x,
'pred_10x': pred_10x,
'attn_05x': attn_05x,
}
return output_dict
def forward(self, inputs):
if cfg.MODEL.N_SCALES and not self.training:
return self.nscale_forward(inputs, cfg.MODEL.N_SCALES)
return self.two_scale_forward(inputs)
def HRNet(num_classes, criterion):
return OCRNet(num_classes, trunk='hrnetv2', criterion=criterion)
def HRNet_Mscale(num_classes, criterion):
return MscaleOCR(num_classes, trunk='hrnetv2', criterion=criterion)