-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
259 lines (207 loc) · 9.91 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
import argparse
import torch
import os
import json
import torchvision.transforms as transforms
from dataset import AlignDataset, ZeroShotDataset
from losses import ContrastiveLoss
from torch.utils.data import DataLoader
from utils import utils
import numpy as np
from model import OpenDlign
from configs import get_cfg_default
import random
import torch.nn as nn
import open_clip
import logging
import datetime
from zero_shot import zero_shot_eval, generate_eval_depth_files
def resume_checkpoint(model, optimizer_d_visual, scheduler_d_visual, checkpoint_path):
checkpoint = torch.load(checkpoint_path)
model.load_state_dict(checkpoint['model_state_dict'], strict=True)
optimizer_d_visual.load_state_dict(checkpoint['optimizer_d_visual_state_dict'])
scheduler_d_visual.load_state_dict(checkpoint['scheduler_d_visual_state_dict'])
return model, optimizer_d_visual, scheduler_d_visual
def train(model, contrastive_criterion, optimizer_d_visual, scheduler_d_visual, train_loader, test_loader, label_dict, cfg):
update_freq = 3
epochs = 10
feature_loss = nn.MSELoss()
for epoch in range(epochs):
model.train()
ct_loss = 0
A2B_acc = 0
B2A_acc = 0
total_feature_loss = 0
logging.info(f"epoch {epoch}")
for i, (rgb, depth) in enumerate(train_loader):
rgb = rgb.cuda(cfg.gpu, non_blocking=True)
depth = depth.cuda(cfg.gpu, non_blocking=True).float()
outputs = model(rgb, depth)
feature_loss_val = feature_loss(outputs['feature_A'], outputs['feature_B'])
loss_dict = contrastive_criterion(outputs)
optimizer_d_visual.zero_grad()
# contrastive loss + feature distance loss
loss = loss_dict['loss_A_B'] + feature_loss_val
loss.backward()
optimizer_d_visual.step()
scheduler_d_visual.step()
A2B_acc += loss_dict['A_B_acc'].item()
B2A_acc += loss_dict['B_A_acc'].item()
ct_loss += loss_dict['loss_A_B'].item()
total_feature_loss += feature_loss_val.item()
if (i + 1) % update_freq == 0 and i != 0:
# logging.info(type(contrastive_loss), type(g_loss), type(D_loss), type(total_depth_rgb_acc), type(total_rgb_depth_acc), type(total_depth_text_acc), type(total_text_depth_acc))
logging.info(f"iter {i}: CV_loss: {round(ct_loss / update_freq, 2)}, feat_dist_loss: {round(total_feature_loss / update_freq, 2)}, depth2rgb_acc: {round(A2B_acc / update_freq, 2)}, rgb2depth_acc: {round(B2A_acc / update_freq, 2)}")
ct_loss, A2B_acc, B2A_acc, total_feature_loss = 0, 0, 0, 0
optimizer_d_visual_state = optimizer_d_visual.state_dict()
checkpoint = {
'epoch': epoch,
'model_state_dict': model.state_dict(),
'optimizer_d_visual_state_dict': optimizer_d_visual_state,
'scheduler_d_visual_state_dict': scheduler_d_visual.state_dict(),
}
zero_shot_eval(model, test_loader, label_dict, cfg)
torch.save(checkpoint, os.path.join(cfg.output_checkpoint_dir, f"checkpoint_{epoch}.pth"))
def generate_rgb_depth_files(cfg):
root = cfg.root
dataset_list = cfg.train_dataset
depth_files = []
RGB_files = []
for dataset in dataset_list:
RGB_path = os.path.join(root, dataset, "depth_align_img")
depth_path = os.path.join(root, dataset, "depth_map")
filenames = os.listdir(RGB_path)
for i in range(len(filenames)):
depth_files.append(os.path.join(depth_path, filenames[i] + "_dm.npy"))
RGB_files.append(os.path.join(RGB_path, filenames[i]))
return RGB_files, depth_files
def main(cfg):
seed = cfg.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
# =================== Depth map and depth-aligned Datalodaer Definition =================== #
RGB_files, depth_files = generate_rgb_depth_files(cfg)
test_depth_files, test_labels = generate_eval_depth_files(cfg)
random.seed(seed)
random.shuffle(RGB_files)
random.seed(seed)
random.shuffle(depth_files)
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
train_transform = test_transform = transforms.Compose([
transforms.ToTensor(),
normalize
])
logging.info("loading pretrained model")
clip_model, _, _ = open_clip.create_model_and_transforms(cfg.clip_model, pretrained='dfn5b')
logging.info("loading tokenizer")
tokenizer = open_clip.get_tokenizer(cfg.clip_model)
with open('labels.json') as f:
classnames = json.load(f)[cfg.eval_dataset]
label_dict = {i: category for i, category in enumerate(classnames)}
train_dataset = AlignDataset(RGB_files, depth_files, transform=train_transform, tokenizer = tokenizer)
test_dataset = ZeroShotDataset(test_depth_files, test_labels, transform=test_transform, classnames = classnames)
train_loader = DataLoader(train_dataset, batch_size=cfg.DATALOADER.TRAIN_X.BATCH_SIZE, shuffle=True, num_workers = 4)
test_loader = DataLoader(test_dataset, batch_size=cfg.DATALOADER.TEST.BATCH_SIZE, shuffle=False, num_workers = 4)
# =================== OpenDlign model Definition =================== #
model = OpenDlign(clip_model, tokenizer)
model.cuda(cfg.gpu)
for name, param in model.named_parameters():
param.requires_grad_('depth_control_visual.resblocks.0.att' in name)
state_dict_visual = model.clip_model.visual.state_dict()
optimizer_d_visual = torch.optim.AdamW(model.clip_model.visual.parameters(), lr=3e-5, betas = cfg.betas, eps = cfg.eps, weight_decay=cfg.wd)
scheduler_d_visual = torch.optim.lr_scheduler.OneCycleLR(optimizer_d_visual, max_lr=3e-4, steps_per_epoch = len(train_loader), epochs=10)
if cfg.resume:
model, optimizer_d_visual, scheduler_d_visual = resume_checkpoint(model, optimizer_d_visual, scheduler_d_visual, cfg.resume_path)
else:
last_layer_num = cfg.vision_cfg.layers - 1
state_dict_visual = model.clip_model.visual.state_dict()
for key in state_dict_visual.keys():
if f'resblocks.{last_layer_num}' in key:
new_key = key.replace(f'resblocks.{last_layer_num}', 'depth_control_visual.resblocks.0')
state_dict_visual[new_key] = state_dict_visual[key].clone()
model.clip_model.visual.load_state_dict(state_dict_visual)
num_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
print("number of trainable parameters:", num_params)
# =================== Loss Definition =================== #
contrastive_criterion = ContrastiveLoss()
train(model, contrastive_criterion, optimizer_d_visual, scheduler_d_visual, train_loader, test_loader, label_dict, cfg)
def reset_config(cfg, args):
if args.root is not None:
cfg.root = args.root
if args.seed is not None:
cfg.seed = args.seed
if args.clip_model is not None:
cfg.clip_model = args.clip_model
if args.resume is not None:
cfg.resume = args.resume
if args.resume_path is not None:
cfg.resume_path = args.resume_path
if args.log_dir is not None:
cfg.log_dir = args.log_dir
if args.output_checkpoint_dir is not None:
cfg.output_checkpoint_dir = args.output_checkpoint_dir
if args.gpu is not None:
cfg.gpu = args.gpu
if args.wd is not None:
cfg.wd = args.wd
if args.betas is not None:
cfg.betas = args.betas
if args.eps is not None:
cfg.eps = args.eps
if args.eval_dataset is not None:
cfg.eval_dataset = args.eval_dataset
if args.train_dataset is not None:
cfg.train_dataset = args.train_dataset
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--root", type=str, default="point_cloud_dataset/", help="path to dataset")
parser.add_argument(
"--train_dataset", type=list, default=['shapenet'], help="shapenet-55"
)
parser.add_argument(
"--resume", type=bool, default=False, help="resume training"
)
parser.add_argument(
"--resume_path", type=str, default="checkpoints_b128_no_feature_loss", help="path to resume checkpoint"
)
parser.add_argument(
"--output_checkpoint_dir", type=str, default="checkpoints_b128_no_feature_loss", help="path to save checkpoint"
)
parser.add_argument(
"--clip_model", type=str, default="ViT-H-14-quickgelu", help="clip model name"
)
parser.add_argument(
"--eval_dataset", type=str, default="modelnet40", help="modelnet40"
)
parser.add_argument(
"--seed", type=int, default=42, help="only positive value enables a fixed seed"
)
parser.add_argument(
"--gpu", type=int, default=0, help="gpu id"
)
parser.add_argument(
"--log_dir", type=str, default="logging", help="path to print log"
)
parser.add_argument(
"--config-file", type=str, default="model_configs/ViT-H-14-quickgelu.yaml", help="path to config file"
)
parser.add_argument('--wd', default=0.1, type=float)
parser.add_argument('--betas', default=(0.9, 0.98), nargs=2, type=float)
parser.add_argument('--eps', default=1e-8, type=float)
args = parser.parse_args()
cfg = get_cfg_default()
reset_config(cfg, args)
cfg.merge_from_file(args.config_file)
cfg.freeze()
# Get current date and time
current_time = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
# Include the timestamp in the log filename
log_filename = f"{cfg.log_dir}/OpenDlign_Training_{current_time}.log"
logging.basicConfig(
filename=log_filename,
level=logging.INFO,
format='%(asctime)s - %(message)s',
datefmt='%Y-%m-%d %H:%M:%S'
)
main(cfg)