-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathsensor_join.R
163 lines (129 loc) · 5.12 KB
/
sensor_join.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
#' @export
#' @importFrom rlang .data
#'
#' @title Join airsensor objects from different time periods
#'
#' @param sensor1 An AirSensor object.
#' @param sensor2 An AirSensor object.
#'
#' @description AirSensor objects are "joined end-to-end" so that time ranges
#' are extended for all sensors that appear in either \code{sensor1} and
#' \code{sensor2}.
#'
#' Only two \code{airsensor} objects at a time may be joined.
#'
#' @return An \emph{airsensor} object containing all data from both incoming objects.
#'
#' @examples
#' \donttest{
#' # Fail gracefully if any resources are not available
#' try({
#'
#' library(AirSensor)
#' setArchiveBaseUrl("https://airsensor.aqmd.gov/PurpleAir/v1")
#'
#' jan <- sensor_loadMonth("scaqmd", 202001)
#' feb <- sensor_loadMonth("scaqmd", 202002)
#' mar <- sensor_loadMonth("scaqmd", 202003)
#' apr <- sensor_loadMonth("scaqmd", 202004)
#'
#' feb_mar <- sensor_join(feb, mar)
#' PWFSLSmoke::monitor_timeseriesPlot(feb_mar, style = 'gnats')
#'
#' # Gaps in the time axis are filled with NA
#' feb_apr <- sensor_join(feb, apr)
#' PWFSLSmoke::monitor_timeseriesPlot(feb_apr, style = 'gnats')
#'
#' }, silent = FALSE)
#' }
sensor_join <- function(
sensor1 = NULL,
sensor2 = NULL
) {
# ----- Validate parameters --------------------------------------------------
MazamaCoreUtils::stopIfNull(sensor1)
MazamaCoreUtils::stopIfNull(sensor2)
if ( !sensor_isSensor(sensor1) )
stop("Parameter 'sensor' is not a valid 'airsensor' object.")
if ( sensor_isEmpty(sensor1) )
stop("Parameter 'sensor' has no data.")
if ( !sensor_isSensor(sensor2) )
stop("Parameter 'sensor' is not a valid 'airsensor' object.")
if ( sensor_isEmpty(sensor2) )
stop("Parameter 'sensor' has no data.")
# ----- Partition sensor objects ---------------------------------------------
# Determine which one is earlier
if ( sensor1$data$datetime[1] < sensor2$data$datetime[1] ) {
a <- sensor1
b <- sensor2
} else {
a <- sensor2
b <- sensor1
}
# Partition into a_only, b_only and ab_shared
a_IDs <- a$meta$monitorID
b_IDs <- b$meta$monitorID
a_only_IDs <- setdiff(a_IDs, b_IDs)
b_only_IDs <- setdiff(b_IDs, a_IDs)
ab_shared_IDs <- intersect(a_IDs, b_IDs)
a_only <- a %>% sensor_filterMeta(.data$monitorID %in% a_only_IDs)
b_only <- b %>% sensor_filterMeta(.data$monitorID %in% b_only_IDs)
a_shared <- a %>% sensor_filterMeta(.data$monitorID %in% ab_shared_IDs)
b_shared <- b %>% sensor_filterMeta(.data$monitorID %in% ab_shared_IDs)
if ( !sensor_isEmpty(b_shared) ) {
# Guarantee proper ordering
b_shared <- PWFSLSmoke::monitor_reorder(b_shared, a_shared$meta$monitorID)
if ( !all(names(a_shared$data) == names(b_shared$data)) ) {
stop("a_shared and b_shared contain non-identical sensors")
}
}
# ----- Create start- and endtimes -------------------------------------------
# Create an overall time axis
starttime <- min(a$data$datetime)
endtime <- max(b$data$datetime)
datetime <- seq(starttime, endtime, by = "hours")
hourlyDF <- data.frame(datetime = datetime)
# NOTE: In case of overlaps, keep more of the b data and make a stop one
# NOTE: timepoint before b starts.
a_starttime <- min(a$data$datetime)
a_endtime <- max(a$data$datetime)
b_starttime <- min(b$data$datetime)
b_endtime <- max(b$data$datetime)
ab_overlapCount <-
difftime(a_endtime, b_starttime, units = "hour") %>%
as.numeric() + 1
# ----- Join shared IDs ------------------------------------------------------
# Start with an airsensor object which will have 'meta' and 'data' replaced
ab_shared <- a
# NOTE: Create 'meta' with b first so later removal of duplicate IDs will keep
# NOTE: the more recent record.
ab_shared$meta <-
dplyr::bind_rows(b_shared$meta, a_shared$meta) %>%
dplyr::distinct()
# Remove any rows that are duplicates because of, e.g. pwfsl_closestDistance
if ( any(duplicated(ab_shared$meta$monitorID)) ) {
keepMask <- !duplicated(ab_shared$meta$monitorID)
ab_shared$meta <- ab_shared$meta[keepMask,]
}
# NOTE: Use of sensor_filterDatetime() returns a dataframe that includes
# NOTE: starttime but omits endttime, [starttime, endtime), so there will be
# NOTE: no overlapping timesteps.
# If overlapping, trim a_shared to end just before b_starttime
if ( ab_overlapCount > 0 ) {
a_shared <- sensor_filterDatetime(a_shared, a_starttime, b_starttime)
}
# Replace ab_shared$data with combined a_shared$data and b_shared$data
ab_shared$data <- dplyr::bind_rows(a_shared$data, b_shared$data)
# Fill in missing
if ( ab_overlapCount < 0 ) {
ab_shared$data <- dplyr::full_join(hourlyDF, ab_shared$data, by = "datetime")
}
# ----- Combine a_only, b_only and ab_shared ---------------------------------
# Combine and fill with NA
c <- PWFSLSmoke::monitor_combine(list(a_only, ab_shared))
d <- PWFSLSmoke::monitor_combine(list(c, b_only))
# Guarantee proper ordering
airsensor <- PWFSLSmoke::monitor_reorder(d, d$meta$monitorID)
# ----- Return ---------------------------------------------------------------
return(airsensor)
}