forked from openmc-dev/openmc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathphoton.cpp
896 lines (768 loc) · 29.9 KB
/
photon.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
#include "openmc/photon.h"
#include "openmc/array.h"
#include "openmc/bremsstrahlung.h"
#include "openmc/constants.h"
#include "openmc/distribution_multi.h"
#include "openmc/hdf5_interface.h"
#include "openmc/message_passing.h"
#include "openmc/nuclide.h"
#include "openmc/particle.h"
#include "openmc/random_dist.h"
#include "openmc/random_lcg.h"
#include "openmc/search.h"
#include "openmc/settings.h"
#include "xtensor/xbuilder.hpp"
#include "xtensor/xmath.hpp"
#include "xtensor/xoperation.hpp"
#include "xtensor/xslice.hpp"
#include "xtensor/xview.hpp"
#include <cmath>
#include <fmt/core.h>
#include <tuple> // for tie
namespace openmc {
constexpr int PhotonInteraction::MAX_STACK_SIZE;
//==============================================================================
// Global variables
//==============================================================================
namespace data {
xt::xtensor<double, 1> compton_profile_pz;
std::unordered_map<std::string, int> element_map;
vector<unique_ptr<PhotonInteraction>> elements;
} // namespace data
//==============================================================================
// PhotonInteraction implementation
//==============================================================================
PhotonInteraction::PhotonInteraction(hid_t group)
{
using namespace xt::placeholders;
// Set index of element in global vector
index_ = data::elements.size();
// Get name of nuclide from group, removing leading '/'
name_ = object_name(group).substr(1);
data::element_map[name_] = index_;
// Get atomic number
read_attribute(group, "Z", Z_);
// Determine number of energies and read energy grid
read_dataset(group, "energy", energy_);
// Read coherent scattering
hid_t rgroup = open_group(group, "coherent");
read_dataset(rgroup, "xs", coherent_);
hid_t dset = open_dataset(rgroup, "integrated_scattering_factor");
coherent_int_form_factor_ = Tabulated1D {dset};
close_dataset(dset);
if (object_exists(group, "anomalous_real")) {
dset = open_dataset(rgroup, "anomalous_real");
coherent_anomalous_real_ = Tabulated1D {dset};
close_dataset(dset);
}
if (object_exists(group, "anomalous_imag")) {
dset = open_dataset(rgroup, "anomalous_imag");
coherent_anomalous_imag_ = Tabulated1D {dset};
close_dataset(dset);
}
close_group(rgroup);
// Read incoherent scattering
rgroup = open_group(group, "incoherent");
read_dataset(rgroup, "xs", incoherent_);
dset = open_dataset(rgroup, "scattering_factor");
incoherent_form_factor_ = Tabulated1D {dset};
close_dataset(dset);
close_group(rgroup);
// Read pair production
if (object_exists(group, "pair_production_electron")) {
rgroup = open_group(group, "pair_production_electron");
read_dataset(rgroup, "xs", pair_production_electron_);
close_group(rgroup);
} else {
pair_production_electron_ = xt::zeros_like(energy_);
}
// Read pair production
if (object_exists(group, "pair_production_nuclear")) {
rgroup = open_group(group, "pair_production_nuclear");
read_dataset(rgroup, "xs", pair_production_nuclear_);
close_group(rgroup);
} else {
pair_production_nuclear_ = xt::zeros_like(energy_);
}
// Read photoelectric
rgroup = open_group(group, "photoelectric");
read_dataset(rgroup, "xs", photoelectric_total_);
close_group(rgroup);
// Read heating
if (object_exists(group, "heating")) {
rgroup = open_group(group, "heating");
read_dataset(rgroup, "xs", heating_);
close_group(rgroup);
} else {
heating_ = xt::zeros_like(energy_);
}
// Read subshell photoionization cross section and atomic relaxation data
rgroup = open_group(group, "subshells");
vector<std::string> designators;
read_attribute(rgroup, "designators", designators);
auto n_shell = designators.size();
if (n_shell == 0) {
throw std::runtime_error {
"Photoatomic data for " + name_ + " does not have subshell data."};
}
shells_.resize(n_shell);
cross_sections_ = xt::zeros<double>({energy_.size(), n_shell});
// Create mapping from designator to index
std::unordered_map<int, int> shell_map;
for (int i = 0; i < n_shell; ++i) {
const auto& designator {designators[i]};
int j = 1;
for (const auto& subshell : SUBSHELLS) {
if (designator == subshell) {
shell_map[j] = i;
shells_[i].index_subshell = j;
break;
}
++j;
}
}
shell_map[0] = -1;
for (int i = 0; i < n_shell; ++i) {
const auto& designator {designators[i]};
auto& shell {shells_[i]};
// TODO: Move to ElectronSubshell constructor
hid_t tgroup = open_group(rgroup, designator.c_str());
// Read binding energy energy and number of electrons if atomic relaxation
// data is present
if (attribute_exists(tgroup, "binding_energy")) {
has_atomic_relaxation_ = true;
read_attribute(tgroup, "binding_energy", shell.binding_energy);
read_attribute(tgroup, "num_electrons", shell.n_electrons);
}
// Read subshell cross section
xt::xtensor<double, 1> xs;
dset = open_dataset(tgroup, "xs");
read_attribute(dset, "threshold_idx", shell.threshold);
close_dataset(dset);
read_dataset(tgroup, "xs", xs);
auto cross_section =
xt::view(cross_sections_, xt::range(shell.threshold, _), i);
cross_section = xt::where(xs > 0, xt::log(xs), 0);
if (object_exists(tgroup, "transitions")) {
// Determine dimensions of transitions
dset = open_dataset(tgroup, "transitions");
auto dims = object_shape(dset);
close_dataset(dset);
int n_transition = dims[0];
if (n_transition > 0) {
xt::xtensor<double, 2> matrix;
read_dataset(tgroup, "transitions", matrix);
// Transition probability normalization
double norm = xt::sum(xt::col(matrix, 3))();
shell.transitions.resize(n_transition);
for (int j = 0; j < n_transition; ++j) {
auto& transition = shell.transitions[j];
transition.primary_subshell = shell_map.at(matrix(j, 0));
transition.secondary_subshell = shell_map.at(matrix(j, 1));
transition.energy = matrix(j, 2);
transition.probability = matrix(j, 3) / norm;
}
}
}
close_group(tgroup);
}
close_group(rgroup);
// Check the maximum size of the atomic relaxation stack
auto max_size = this->calc_max_stack_size();
if (max_size > MAX_STACK_SIZE && mpi::master) {
warning(fmt::format(
"The subshell vacancy stack in atomic relaxation can grow up to {}, but "
"the stack size limit is set to {}.",
max_size, MAX_STACK_SIZE));
}
// Determine number of electron shells
rgroup = open_group(group, "compton_profiles");
// Read electron shell PDF and binding energies
read_dataset(rgroup, "num_electrons", electron_pdf_);
electron_pdf_ /= xt::sum(electron_pdf_);
read_dataset(rgroup, "binding_energy", binding_energy_);
// Read Compton profiles
read_dataset(rgroup, "J", profile_pdf_);
// Get Compton profile momentum grid
if (data::compton_profile_pz.size() == 0) {
read_dataset(rgroup, "pz", data::compton_profile_pz);
}
close_group(rgroup);
// Create Compton profile CDF
auto n_profile = data::compton_profile_pz.size();
auto n_shell_compton = profile_pdf_.shape(0);
profile_cdf_ = xt::empty<double>({n_shell_compton, n_profile});
for (int i = 0; i < n_shell_compton; ++i) {
double c = 0.0;
profile_cdf_(i, 0) = 0.0;
for (int j = 0; j < n_profile - 1; ++j) {
c += 0.5 *
(data::compton_profile_pz(j + 1) - data::compton_profile_pz(j)) *
(profile_pdf_(i, j) + profile_pdf_(i, j + 1));
profile_cdf_(i, j + 1) = c;
}
}
// Calculate total pair production
pair_production_total_ = pair_production_nuclear_ + pair_production_electron_;
if (settings::electron_treatment == ElectronTreatment::TTB) {
// Read bremsstrahlung scaled DCS
rgroup = open_group(group, "bremsstrahlung");
read_dataset(rgroup, "dcs", dcs_);
auto n_e = dcs_.shape()[0];
auto n_k = dcs_.shape()[1];
// Get energy grids used for bremsstrahlung DCS and for stopping powers
xt::xtensor<double, 1> electron_energy;
read_dataset(rgroup, "electron_energy", electron_energy);
if (data::ttb_k_grid.size() == 0) {
read_dataset(rgroup, "photon_energy", data::ttb_k_grid);
}
// Get data used for density effect correction
read_dataset(rgroup, "num_electrons", n_electrons_);
read_dataset(rgroup, "ionization_energy", ionization_energy_);
read_attribute(rgroup, "I", I_);
close_group(rgroup);
// Truncate the bremsstrahlung data at the cutoff energy
int photon = static_cast<int>(ParticleType::photon);
const auto& E {electron_energy};
double cutoff = settings::energy_cutoff[photon];
if (cutoff > E(0)) {
size_t i_grid = lower_bound_index(
E.cbegin(), E.cend(), settings::energy_cutoff[photon]);
// calculate interpolation factor
double f = (std::log(cutoff) - std::log(E(i_grid))) /
(std::log(E(i_grid + 1)) - std::log(E(i_grid)));
// Interpolate bremsstrahlung DCS at the cutoff energy and truncate
xt::xtensor<double, 2> dcs({n_e - i_grid, n_k});
for (int i = 0; i < n_k; ++i) {
double y = std::exp(
std::log(dcs_(i_grid, i)) +
f * (std::log(dcs_(i_grid + 1, i)) - std::log(dcs_(i_grid, i))));
auto col_i = xt::view(dcs, xt::all(), i);
col_i(0) = y;
for (int j = i_grid + 1; j < n_e; ++j) {
col_i(j - i_grid) = dcs_(j, i);
}
}
dcs_ = dcs;
xt::xtensor<double, 1> frst {cutoff};
electron_energy = xt::concatenate(xt::xtuple(
frst, xt::view(electron_energy, xt::range(i_grid + 1, n_e))));
}
// Set incident particle energy grid
if (data::ttb_e_grid.size() == 0) {
data::ttb_e_grid = electron_energy;
}
// Calculate the radiative stopping power
stopping_power_radiative_ = xt::empty<double>({data::ttb_e_grid.size()});
for (int i = 0; i < data::ttb_e_grid.size(); ++i) {
// Integrate over reduced photon energy
double c = 0.0;
for (int j = 0; j < data::ttb_k_grid.size() - 1; ++j) {
c += 0.5 * (dcs_(i, j + 1) + dcs_(i, j)) *
(data::ttb_k_grid(j + 1) - data::ttb_k_grid(j));
}
double e = data::ttb_e_grid(i);
// Square of the ratio of the speed of light to the velocity of the
// charged particle
double beta_sq = e * (e + 2.0 * MASS_ELECTRON_EV) /
((e + MASS_ELECTRON_EV) * (e + MASS_ELECTRON_EV));
stopping_power_radiative_(i) = Z_ * Z_ / beta_sq * e * c;
}
}
// Take logarithm of energies and cross sections since they are log-log
// interpolated
energy_ = xt::log(energy_);
coherent_ = xt::where(coherent_ > 0.0, xt::log(coherent_), -500.0);
incoherent_ = xt::where(incoherent_ > 0.0, xt::log(incoherent_), -500.0);
photoelectric_total_ = xt::where(
photoelectric_total_ > 0.0, xt::log(photoelectric_total_), -500.0);
pair_production_total_ = xt::where(
pair_production_total_ > 0.0, xt::log(pair_production_total_), -500.0);
heating_ = xt::where(heating_ > 0.0, xt::log(heating_), -500.0);
}
PhotonInteraction::~PhotonInteraction()
{
data::element_map.erase(name_);
}
int PhotonInteraction::calc_max_stack_size() const
{
// Table to store solutions to sub-problems
std::unordered_map<int, int> visited;
// Find the maximum possible size of the stack used to store holes created
// during atomic relaxation, checking over every subshell the initial hole
// could be in
int max_size = 0;
for (int i_shell = 0; i_shell < shells_.size(); ++i_shell) {
max_size = std::max(max_size, this->calc_helper(visited, i_shell));
}
return max_size;
}
int PhotonInteraction::calc_helper(
std::unordered_map<int, int>& visited, int i_shell) const
{
// No transitions for this subshell, so this is the only shell in the stack
const auto& shell {shells_[i_shell]};
if (shell.transitions.empty()) {
return 1;
}
// Check the table to see if the maximum stack size has already been
// calculated for this shell
auto it = visited.find(i_shell);
if (it != visited.end()) {
return it->second;
}
int max_size = 0;
for (const auto& transition : shell.transitions) {
// If this is a non-radiative transition two vacancies are created and
// the stack grows by one; if this is a radiative transition only one
// vacancy is created and the stack size stays the same
int size = 0;
if (transition.secondary_subshell != -1) {
size = this->calc_helper(visited, transition.secondary_subshell) + 1;
}
size =
std::max(size, this->calc_helper(visited, transition.primary_subshell));
max_size = std::max(max_size, size);
}
visited[i_shell] = max_size;
return max_size;
}
void PhotonInteraction::compton_scatter(double alpha, bool doppler,
double* alpha_out, double* mu, int* i_shell, uint64_t* seed) const
{
double form_factor_xmax = 0.0;
while (true) {
// Sample Klein-Nishina distribution for trial energy and angle
std::tie(*alpha_out, *mu) = klein_nishina(alpha, seed);
// Note that the parameter used here does not correspond exactly to the
// momentum transfer q in ENDF-102 Eq. (27.2). Rather, this is the
// parameter as defined by Hubbell, where the actual data comes from
double x =
MASS_ELECTRON_EV / PLANCK_C * alpha * std::sqrt(0.5 * (1.0 - *mu));
// Calculate S(x, Z) and S(x_max, Z)
double form_factor_x = incoherent_form_factor_(x);
if (form_factor_xmax == 0.0) {
form_factor_xmax =
incoherent_form_factor_(MASS_ELECTRON_EV / PLANCK_C * alpha);
}
// Perform rejection on form factor
if (prn(seed) < form_factor_x / form_factor_xmax) {
if (doppler) {
double E_out;
this->compton_doppler(alpha, *mu, &E_out, i_shell, seed);
*alpha_out = E_out / MASS_ELECTRON_EV;
// It's possible for the Compton profile data to have more shells than
// there are in the ENDF data. Make sure the shell index doesn't end up
// out of bounds.
if (*i_shell >= shells_.size()) {
*i_shell = -1;
}
} else {
*i_shell = -1;
}
break;
}
}
}
void PhotonInteraction::compton_doppler(
double alpha, double mu, double* E_out, int* i_shell, uint64_t* seed) const
{
auto n = data::compton_profile_pz.size();
int shell; // index for shell
while (true) {
// Sample electron shell
double rn = prn(seed);
double c = 0.0;
for (shell = 0; shell < electron_pdf_.size(); ++shell) {
c += electron_pdf_(shell);
if (rn < c)
break;
}
// Determine binding energy of shell
double E_b = binding_energy_(shell);
// Determine p_z,max
double E = alpha * MASS_ELECTRON_EV;
if (E < E_b) {
*E_out = alpha / (1 + alpha * (1 - mu)) * MASS_ELECTRON_EV;
break;
}
double pz_max = -FINE_STRUCTURE * (E_b - (E - E_b) * alpha * (1.0 - mu)) /
std::sqrt(2.0 * E * (E - E_b) * (1.0 - mu) + E_b * E_b);
if (pz_max < 0.0) {
*E_out = alpha / (1 + alpha * (1 - mu)) * MASS_ELECTRON_EV;
break;
}
// Determine profile cdf value corresponding to p_z,max
double c_max;
if (pz_max > data::compton_profile_pz(n - 1)) {
c_max = profile_cdf_(shell, n - 1);
} else {
int i = lower_bound_index(data::compton_profile_pz.cbegin(),
data::compton_profile_pz.cend(), pz_max);
double pz_l = data::compton_profile_pz(i);
double pz_r = data::compton_profile_pz(i + 1);
double p_l = profile_pdf_(shell, i);
double p_r = profile_pdf_(shell, i + 1);
double c_l = profile_cdf_(shell, i);
if (pz_l == pz_r) {
c_max = c_l;
} else if (p_l == p_r) {
c_max = c_l + (pz_max - pz_l) * p_l;
} else {
double m = (p_l - p_r) / (pz_l - pz_r);
c_max = c_l + (std::pow((m * (pz_max - pz_l) + p_l), 2) - p_l * p_l) /
(2.0 * m);
}
}
// Sample value on bounded cdf
c = prn(seed) * c_max;
// Determine pz corresponding to sampled cdf value
auto cdf_shell = xt::view(profile_cdf_, shell, xt::all());
int i = lower_bound_index(cdf_shell.cbegin(), cdf_shell.cend(), c);
double pz_l = data::compton_profile_pz(i);
double pz_r = data::compton_profile_pz(i + 1);
double p_l = profile_pdf_(shell, i);
double p_r = profile_pdf_(shell, i + 1);
double c_l = profile_cdf_(shell, i);
double pz;
if (pz_l == pz_r) {
pz = pz_l;
} else if (p_l == p_r) {
pz = pz_l + (c - c_l) / p_l;
} else {
double m = (p_l - p_r) / (pz_l - pz_r);
pz = pz_l + (std::sqrt(p_l * p_l + 2.0 * m * (c - c_l)) - p_l) / m;
}
// Determine outgoing photon energy corresponding to electron momentum
// (solve Eq. 39 in LA-UR-04-0487 for E')
double momentum_sq = std::pow((pz / FINE_STRUCTURE), 2);
double f = 1.0 + alpha * (1.0 - mu);
double a = momentum_sq - f * f;
double b = 2.0 * E * (f - momentum_sq * mu);
c = E * E * (momentum_sq - 1.0);
double quad = b * b - 4.0 * a * c;
if (quad < 0) {
*E_out = alpha / (1 + alpha * (1 - mu)) * MASS_ELECTRON_EV;
break;
}
quad = std::sqrt(quad);
double E_out1 = -(b + quad) / (2.0 * a);
double E_out2 = -(b - quad) / (2.0 * a);
// Determine solution to quadratic equation that is positive
if (E_out1 > 0.0) {
if (E_out2 > 0.0) {
// If both are positive, pick one at random
*E_out = prn(seed) < 0.5 ? E_out1 : E_out2;
} else {
*E_out = E_out1;
}
} else {
if (E_out2 > 0.0) {
*E_out = E_out2;
} else {
// No positive solution -- resample
continue;
}
}
if (*E_out < E - E_b)
break;
}
*i_shell = shell;
}
void PhotonInteraction::calculate_xs(Particle& p) const
{
// Perform binary search on the element energy grid in order to determine
// which points to interpolate between
int n_grid = energy_.size();
double log_E = std::log(p.E());
int i_grid;
if (log_E <= energy_[0]) {
i_grid = 0;
} else if (log_E > energy_(n_grid - 1)) {
i_grid = n_grid - 2;
} else {
// We use upper_bound_index here because sometimes photons are created with
// energies that exactly match a grid point
i_grid = upper_bound_index(energy_.cbegin(), energy_.cend(), log_E);
}
// check for case where two energy points are the same
if (energy_(i_grid) == energy_(i_grid + 1))
++i_grid;
// calculate interpolation factor
double f =
(log_E - energy_(i_grid)) / (energy_(i_grid + 1) - energy_(i_grid));
auto& xs {p.photon_xs(index_)};
xs.index_grid = i_grid;
xs.interp_factor = f;
// Calculate microscopic coherent cross section
xs.coherent = std::exp(
coherent_(i_grid) + f * (coherent_(i_grid + 1) - coherent_(i_grid)));
// Calculate microscopic incoherent cross section
xs.incoherent = std::exp(
incoherent_(i_grid) + f * (incoherent_(i_grid + 1) - incoherent_(i_grid)));
// Calculate microscopic photoelectric cross section
xs.photoelectric = 0.0;
const auto& xs_lower = xt::row(cross_sections_, i_grid);
const auto& xs_upper = xt::row(cross_sections_, i_grid + 1);
for (int i = 0; i < xs_upper.size(); ++i)
if (xs_lower(i) != 0)
xs.photoelectric +=
std::exp(xs_lower(i) + f * (xs_upper(i) - xs_lower(i)));
// Calculate microscopic pair production cross section
xs.pair_production = std::exp(
pair_production_total_(i_grid) +
f * (pair_production_total_(i_grid + 1) - pair_production_total_(i_grid)));
// Calculate microscopic total cross section
xs.total =
xs.coherent + xs.incoherent + xs.photoelectric + xs.pair_production;
xs.last_E = p.E();
}
double PhotonInteraction::rayleigh_scatter(double alpha, uint64_t* seed) const
{
double mu;
while (true) {
// Determine maximum value of x^2
double x2_max = std::pow(MASS_ELECTRON_EV / PLANCK_C * alpha, 2);
// Determine F(x^2_max, Z)
double F_max = coherent_int_form_factor_(x2_max);
// Sample cumulative distribution
double F = prn(seed) * F_max;
// Determine x^2 corresponding to F
const auto& x {coherent_int_form_factor_.x()};
const auto& y {coherent_int_form_factor_.y()};
int i = lower_bound_index(y.cbegin(), y.cend(), F);
double r = (F - y[i]) / (y[i + 1] - y[i]);
double x2 = x[i] + r * (x[i + 1] - x[i]);
// Calculate mu
mu = 1.0 - 2.0 * x2 / x2_max;
if (prn(seed) < 0.5 * (1.0 + mu * mu))
break;
}
return mu;
}
void PhotonInteraction::pair_production(double alpha, double* E_electron,
double* E_positron, double* mu_electron, double* mu_positron,
uint64_t* seed) const
{
constexpr double r[] {122.81, 73.167, 69.228, 67.301, 64.696, 61.228, 57.524,
54.033, 50.787, 47.851, 46.373, 45.401, 44.503, 43.815, 43.074, 42.321,
41.586, 40.953, 40.524, 40.256, 39.756, 39.144, 38.462, 37.778, 37.174,
36.663, 35.986, 35.317, 34.688, 34.197, 33.786, 33.422, 33.068, 32.740,
32.438, 32.143, 31.884, 31.622, 31.438, 31.142, 30.950, 30.758, 30.561,
30.285, 30.097, 29.832, 29.581, 29.411, 29.247, 29.085, 28.930, 28.721,
28.580, 28.442, 28.312, 28.139, 27.973, 27.819, 27.675, 27.496, 27.285,
27.093, 26.911, 26.705, 26.516, 26.304, 26.108, 25.929, 25.730, 25.577,
25.403, 25.245, 25.100, 24.941, 24.790, 24.655, 24.506, 24.391, 24.262,
24.145, 24.039, 23.922, 23.813, 23.712, 23.621, 23.523, 23.430, 23.331,
23.238, 23.139, 23.048, 22.967, 22.833, 22.694, 22.624, 22.545, 22.446,
22.358, 22.264};
// The reduced screening radius r is the ratio of the screening radius to
// the Compton wavelength of the electron, where the screening radius is
// obtained under the assumption that the Coulomb field of the nucleus is
// exponentially screened by atomic electrons. This allows us to use a
// simplified atomic form factor and analytical approximations of the
// screening functions in the pair production DCS instead of computing the
// screening functions numerically. The reduced screening radii above for
// Z = 1-99 come from F. Salvat, J. M. Fernández-Varea, and J. Sempau,
// "PENELOPE-2011: A Code System for Monte Carlo Simulation of Electron and
// Photon Transport," OECD-NEA, Issy-les-Moulineaux, France (2011).
// Compute the high-energy Coulomb correction
double a = Z_ / FINE_STRUCTURE;
double c =
a * a *
(1.0 / (1.0 + a * a) + 0.202059 +
a * a *
(-0.03693 +
a * a *
(0.00835 +
a * a *
(-0.00201 +
a * a * (0.00049 + a * a * (-0.00012 + a * a * 0.00003))))));
// The analytical approximation of the DCS underestimates the cross section
// at low energies. The correction factor f compensates for this.
double q = std::sqrt(2.0 / alpha);
double f = q * (-0.1774 - 12.10 * a + 11.18 * a * a) +
q * q * (8.523 + 73.26 * a - 44.41 * a * a) +
q * q * q * (-13.52 - 121.1 * a + 96.41 * a * a) +
q * q * q * q * (8.946 + 62.05 * a - 63.41 * a * a);
// Calculate phi_1(1/2) and phi_2(1/2). The unnormalized PDF for the reduced
// energy is given by p = 2*(1/2 - e)^2*phi_1(e) + phi_2(e), where phi_1 and
// phi_2 are non-negative and maximum at e = 1/2.
double b = 2.0 * r[Z_] / alpha;
double t1 = 2.0 * std::log(1.0 + b * b);
double t2 = b * std::atan(1.0 / b);
double t3 = b * b * (4.0 - 4.0 * t2 - 3.0 * std::log(1.0 + 1.0 / (b * b)));
double t4 = 4.0 * std::log(r[Z_]) - 4.0 * c + f;
double phi1_max = 7.0 / 3.0 - t1 - 6.0 * t2 - t3 + t4;
double phi2_max = 11.0 / 6.0 - t1 - 3.0 * t2 + 0.5 * t3 + t4;
// To aid sampling, the unnormalized PDF can be expressed as
// p = u_1*U_1(e)*pi_1(e) + u_2*U_2(e)*pi_2(e), where pi_1 and pi_2 are
// normalized PDFs on the interval (e_min, e_max) from which values of e can
// be sampled using the inverse transform method, and
// U_1 = phi_1(e)/phi_1(1/2) and U_2 = phi_2(e)/phi_2(1/2) are valid
// rejection functions. The reduced energy can now be sampled using a
// combination of the composition and rejection methods.
double u1 = 2.0 / 3.0 * std::pow(0.5 - 1.0 / alpha, 2) * phi1_max;
double u2 = phi2_max;
double e;
while (true) {
double rn = prn(seed);
// Sample the index i in (1, 2) using the point probabilities
// p(1) = u_1/(u_1 + u_2) and p(2) = u_2/(u_1 + u_2)
int i;
if (prn(seed) < u1 / (u1 + u2)) {
i = 1;
// Sample e from pi_1 using the inverse transform method
e = rn >= 0.5
? 0.5 + (0.5 - 1.0 / alpha) * std::pow(2.0 * rn - 1.0, 1.0 / 3.0)
: 0.5 - (0.5 - 1.0 / alpha) * std::pow(1.0 - 2.0 * rn, 1.0 / 3.0);
} else {
i = 2;
// Sample e from pi_2 using the inverse transform method
e = 1.0 / alpha + (0.5 - 1.0 / alpha) * 2.0 * rn;
}
// Calculate phi_i(e) and deliver e if rn <= U_i(e)
b = r[Z_] / (2.0 * alpha * e * (1.0 - e));
t1 = 2.0 * std::log(1.0 + b * b);
t2 = b * std::atan(1.0 / b);
t3 = b * b * (4.0 - 4.0 * t2 - 3.0 * std::log(1.0 + 1.0 / (b * b)));
if (i == 1) {
double phi1 = 7.0 / 3.0 - t1 - 6.0 * t2 - t3 + t4;
if (prn(seed) <= phi1 / phi1_max)
break;
} else {
double phi2 = 11.0 / 6.0 - t1 - 3.0 * t2 + 0.5 * t3 + t4;
if (prn(seed) <= phi2 / phi2_max)
break;
}
}
// Compute the kinetic energy of the electron and the positron
*E_electron = (alpha * e - 1.0) * MASS_ELECTRON_EV;
*E_positron = (alpha * (1.0 - e) - 1.0) * MASS_ELECTRON_EV;
// Sample the scattering angle of the electron. The cosine of the polar
// angle of the direction relative to the incident photon is sampled from
// p(mu) = C/(1 - beta*mu)^2 using the inverse transform method.
double beta =
std::sqrt(*E_electron * (*E_electron + 2.0 * MASS_ELECTRON_EV)) /
(*E_electron + MASS_ELECTRON_EV);
double rn = uniform_distribution(-1., 1., seed);
*mu_electron = (rn + beta) / (rn * beta + 1.0);
// Sample the scattering angle of the positron
beta = std::sqrt(*E_positron * (*E_positron + 2.0 * MASS_ELECTRON_EV)) /
(*E_positron + MASS_ELECTRON_EV);
rn = uniform_distribution(-1., 1., seed);
*mu_positron = (rn + beta) / (rn * beta + 1.0);
}
void PhotonInteraction::atomic_relaxation(int i_shell, Particle& p) const
{
// Return if no atomic relaxation data is present
if (!has_atomic_relaxation_)
return;
// Stack for unprocessed holes left by transitioning electrons
int n_holes = 0;
array<int, MAX_STACK_SIZE> holes;
// Push the initial hole onto the stack
holes[n_holes++] = i_shell;
while (n_holes > 0) {
// Pop the next hole off the stack
int i_hole = holes[--n_holes];
const auto& shell {shells_[i_hole]};
// If no transitions, assume fluorescent photon from captured free electron
if (shell.transitions.empty()) {
Direction u = isotropic_direction(p.current_seed());
double E = shell.binding_energy;
p.create_secondary(p.wgt(), u, E, ParticleType::photon);
continue;
}
// Sample transition
double c = -prn(p.current_seed());
int i_trans;
for (i_trans = 0; i_trans < shell.transitions.size(); ++i_trans) {
c += shell.transitions[i_trans].probability;
if (c > 0)
break;
}
const auto& transition = shell.transitions[i_trans];
// Sample angle isotropically
Direction u = isotropic_direction(p.current_seed());
// Push the hole created by the electron transitioning to the photoelectron
// hole onto the stack
holes[n_holes++] = transition.primary_subshell;
if (transition.secondary_subshell != -1) {
// Non-radiative transition -- Auger/Coster-Kronig effect
// Push the hole left by emitted auger electron onto the stack
holes[n_holes++] = transition.secondary_subshell;
// Create auger electron
p.create_secondary(p.wgt(), u, transition.energy, ParticleType::electron);
} else {
// Radiative transition -- get X-ray energy
// Create fluorescent photon
p.create_secondary(p.wgt(), u, transition.energy, ParticleType::photon);
}
}
}
//==============================================================================
// Non-member functions
//==============================================================================
std::pair<double, double> klein_nishina(double alpha, uint64_t* seed)
{
double alpha_out, mu;
double beta = 1.0 + 2.0 * alpha;
if (alpha < 3.0) {
// Kahn's rejection method
double t = beta / (beta + 8.0);
double x;
while (true) {
if (prn(seed) < t) {
// Left branch of flow chart
double r = uniform_distribution(0.0, 2.0, seed);
x = 1.0 + alpha * r;
if (prn(seed) < 4.0 / x * (1.0 - 1.0 / x)) {
mu = 1 - r;
break;
}
} else {
// Right branch of flow chart
x = beta / (1.0 + 2.0 * alpha * prn(seed));
mu = 1.0 + (1.0 - x) / alpha;
if (prn(seed) < 0.5 * (mu * mu + 1.0 / x))
break;
}
}
alpha_out = alpha / x;
} else {
// Koblinger's direct method
double gamma = 1.0 - std::pow(beta, -2);
double s =
prn(seed) * (4.0 / alpha + 0.5 * gamma +
(1.0 - (1.0 + beta) / (alpha * alpha)) * std::log(beta));
if (s <= 2.0 / alpha) {
// For first term, x = 1 + 2ar
// Therefore, a' = a/(1 + 2ar)
alpha_out = alpha / (1.0 + 2.0 * alpha * prn(seed));
} else if (s <= 4.0 / alpha) {
// For third term, x = beta/(1 + 2ar)
// Therefore, a' = a(1 + 2ar)/beta
alpha_out = alpha * (1.0 + 2.0 * alpha * prn(seed)) / beta;
} else if (s <= 4.0 / alpha + 0.5 * gamma) {
// For fourth term, x = 1/sqrt(1 - gamma*r)
// Therefore, a' = a*sqrt(1 - gamma*r)
alpha_out = alpha * std::sqrt(1.0 - gamma * prn(seed));
} else {
// For third term, x = beta^r
// Therefore, a' = a/beta^r
alpha_out = alpha / std::pow(beta, prn(seed));
}
// Calculate cosine of scattering angle based on basic relation
mu = 1.0 + 1.0 / alpha - 1.0 / alpha_out;
}
return {alpha_out, mu};
}
void free_memory_photon()
{
data::elements.clear();
data::compton_profile_pz.resize({0});
data::ttb_e_grid.resize({0});
data::ttb_k_grid.resize({0});
}
} // namespace openmc