-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathutils_chatglm.py
37 lines (35 loc) · 1.82 KB
/
utils_chatglm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import torch
def generate_inputs(tokenizer, query='', history=[]):
assert query or history, "query and history cannot both empty"
if not history:
prompt = query
else:
prompt = ""
for i, (old_query, response) in enumerate(history):
if i==len(history)-1 and query == "":
prompt += "[Round {}]\n问:{}\n答:".format(i, old_query)
else:
prompt += "[Round {}]\n问:{}\n答:{}\n".format(i, old_query, response)
if query:
prompt += "[Round {}]\n问:{}\n答:".format(len(history), query)
inputs = tokenizer([prompt], return_tensors="pt")
gen_len = 0
if query=="":
# query为空代表history的最后一个回答是目标答案
last_response_encode = tokenizer.encode(history[-1][1], return_tensors="pt", add_special_tokens=False)
if last_response_encode[0, 0] == 5:
last_response_encode = last_response_encode[:, 1:]
# TODO batch化
eops = torch.zeros_like(last_response_encode[:, :1])+tokenizer.convert_tokens_to_ids("<eop>")
# TODO 后续用scatter来放到可能多个句子的带padding的正确位置,暂时先放到最后,因为现在只有一句
last_response_encode = torch.cat([last_response_encode, eops], dim=-1)
inputs["input_ids"] = torch.cat([inputs["input_ids"], last_response_encode], dim=-1)
gen_len = last_response_encode.shape[1]
return inputs, gen_len
if __name__ == "__main__":
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True)
inputs = generate_inputs(tokenizer, query="", history=[["你好", "你好"]])
print(inputs)
inputs2 = generate_inputs(tokenizer, query="你好", history=[["你好", "你好"]])
print(inputs2)