Skip to content

Mol2017/act

Repository files navigation

ACT: Action Chunking with Transformers

This repo contains the implementation of ACT, together with 2 simulated environments: Transfer Cube and Bimanual Insertion. You can train and evaluate ACT in sim (tested) or real (ongoing).

Repo Structure

  • imitate_episodes.py Train and Evaluate ACT
  • policy.py An adaptor for ACT policy
  • detr Model definitions of ACT, modified from DETR
  • sim_env.py Mujoco + DM_Control environments with joint space control
  • ee_sim_env.py Mujoco + DM_Control environments with EE space control
  • scripted_policy.py Scripted policies for sim environments
  • constants.py Constants shared across files
  • utils.py Utils such as data loading and helper functions
  • visualize_episodes.py Save videos from a .hdf5 dataset

Installation

conda create -n aloha python=3.8
conda activate aloha
pip install torchvision
pip install torch
pip install pyquaternion
pip install pyyaml
pip install rospkg
pip install pexpect
pip install mujoco
pip install dm_control
pip install opencv-python
pip install matplotlib
pip install einops
pip install packaging
pip install h5py
pip install h5py_cache
cd act/detr && pip install -e .

Example Usages

To set up a new terminal, run:

conda activate aloha
cd <path to act repo>

Simulated experiments

We use transfer_cube task in the examples below. Another option is insertion. To generated 50 episodes of scripted data, run:

python3 record_sim_episodes.py \
--task_name transfer_cube \
--dataset_dir <data save dir> \
--num_episodes 50

To can add the flag --onscreen_render to see real-time rendering. To visualize the episode after it is collected, run

python3 visualize_episodes.py --dataset_dir <data save dir> --episode_idx 0

To train ACT:

# Transfer Cube task
python3 imitate_episodes.py \
--dataset_dir <data save dir> \
--ckpt_dir <ckpt dir> \
--policy_class ACT --kl_weight 10 --chunk_size 100 --hidden_dim 256 --batch_size 8 --dim_feedforward 2048 \
--task_name transfer_cube --seed 0 \
--temporal_agg \
--num_epochs 1000  --lr 1e-4

# Bimanual Insertion task
python3 imitate_episodes.py \
--dataset_dir <data save dir> \
--ckpt_dir <ckpt dir> \
--policy_class ACT --kl_weight 10 --chunk_size 100 --hidden_dim 256 --batch_size 8 --dim_feedforward 2048 \
--task_name insertion --seed 0 \
--temporal_agg \
--num_epochs 2000  --lr 1e-5

To evaluate the policy, run the same command but add --eval. The success rate should be around 85% for transfer cube, and around 50% for insertion. Videos will be saved to <ckpt_dir> for each rollout. You can also add --onscreen_render to see real-time rendering during evaluation.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%