-
Notifications
You must be signed in to change notification settings - Fork 43
/
Copy pathConfig.py
43 lines (36 loc) · 1.04 KB
/
Config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
'''
TODO:
Configurations for Attention gated residual UNet
on spatial-level or channel-level
Hyper parameters
'''
__author__ = 'MoleImg'
# Main thread controllers
MODEL_NAME = 'AttentionSEResUNet' # AttentionResUNet/AttentionSEResUNet
TRAIN_FLAG = False # if training
TEST_FLAG = True # if test
MODEL_SAVE_FLAG = False # if saving model
MODEL_LOAD_FLAG = False # if load training checkpoint
TRAINING_VISUAL_FLAG = False # if activate training visualization
TENSORBOARD_FLAG = True # if use Tensorboard
# input data
INPUT_SIZE = 128
INPUT_CHANNEL = 1 # 1-grayscale, 3-RGB scale
OUTPUT_MASK_CHANNEL = 1
# network structure
FILTER_NUM = 32 # number of basic filters for the first layer
FILTER_SIZE = 3 # size of the convolutional filter
DOWN_SAMP_SIZE = 2 # size of pooling filters
UP_SAMP_SIZE = 2 # size of upsampling filters
# network hyper-parameter
DROPOUT_RATE = 0
BATCH_NORM_FLAG = True
# training data
TRAINING_SIZE = 5000
TRAINING_START = 1
BATCH_SIZE = 40
EPOCH = 65
VALIDATION_SPLIT = 0.10
# test data
TEST_SIZE = 1
TEST_START = 1