
Optimization for Machine Learning
CS-439

Lecture 4: Proximal and Subgradient Descent

Martin Jaggi

EPFL – github.com/epfml/OptML_course

March 18, 2022

github.com/epfml/OptML_course

Section 3.6

Proximal Gradient Descent

EPFL Optimization for Machine Learning CS-439 2/30

Composite optimization problems

Consider objective functions composed as

f(x) := g(x) + h(x)

where g is a “nice” function, where as h is a “simple” additional term, which however
doesn’t satisfy the assumptions of niceness which we used in the convergence analysis
so far.

In particular, an important case is when h is not differentiable.

EPFL Optimization for Machine Learning CS-439 3/30

Idea

The classical gradient step for minimizing g:

xt+1 = argmin
y

g(xt) +∇g(xt)>(y − xt) +
1

2γ
‖y − xt‖2 .

For the stepsize γ := 1
L

it exactly minimizes the local quadratic model of g at our current iterate xt,

formed by the smoothness property with parameter L.

Now for f = g + h, keep the same for g, and add h unmodified.

xt+1 := argmin
y

g(xt) +∇g(xt)>(y − xt) +
1

2γ
‖y − xt‖2 + h(y)

= argmin
y

1

2γ
‖y − (xt − γ∇g(xt))‖2 + h(y) ,

the proximal gradient descent update.

EPFL Optimization for Machine Learning CS-439 4/30

The proximal gradient descent algorithm

An iteration of proximal gradient descent is defined as

xt+1 := proxh,γ(xt − γ∇g(xt)) .

where the proximal mapping for a given function h, and parameter γ > 0 is defined as

proxh,γ(z) := argmin
y

{ 1

2γ
‖y − z‖2 + h(y)

}
.

The update step can be equivalently written as

xt+1 = xt − γGγ(xt)

for Gh,γ(x) :=
1
γ

(
x− proxh,γ(x− γ∇g(x))

)
being the so called generalized gradient

of f .

EPFL Optimization for Machine Learning CS-439 5/30

A generalization of gradient descent?

I h ≡ 0: recover gradient descent

I h ≡ ιX : recover projected gradient descent!

Given a closed convex set X, the indicator function of the set X is given as the
convex function

ιX : Rd → R ∪+∞

x 7→ ιX(x) :=

{
0 if x ∈ X,
+∞ otherwise.

Proximal mapping becomes

proxh,γ(z) := argmin
y

{ 1

2γ
‖y − z‖2 + ιX(y)

}
= argmin

y∈X
‖y − z‖2

EPFL Optimization for Machine Learning CS-439 6/30

Convergence in O(1/ε) steps

Same as vanilla case for smooth functions, but now for any h for which we can compute

the proximal mapping.

EPFL Optimization for Machine Learning CS-439 7/30

Subgradients
What if f is not differentiable?

Definition
g ∈ Rd is a subgradient of f at x if

f(y) ≥ f(x) + g>(y − x) for all y ∈ dom(f)

Subgradient of a function

g is a subgradient of f (not necessarily convex) at x if

f(y) ≥ f(x) + gT (y − x) for all y

(⇐⇒ (g,−1) supports epi f at (x, f(x)))

PSfrag replacements

x1 x2

f(x1) + gT
1 (x − x1)

f(x2) + gT
2 (x − x2)

f(x2) + gT
3 (x − x2)

f(x)

g2, g3 are subgradients at x2; g1 is a subgradient at x1

Prof. S. Boyd, EE392o, Stanford University 2

∂f(x) ⊆ Rd is the subdifferential, the set of subgradients of f at x.
EPFL Optimization for Machine Learning CS-439 8/30

Subgradients II

Example:

f(x) = |x|

0

f(y) ≥ gy

y 7→ 1
5
y

y 7→ −2
5
y

Subgradient condition at x = 0: f(y) ≥ f(0) + g(y − 0) = gy.

∂f(0) = [−1, 1]

EPFL Optimization for Machine Learning CS-439 9/30

Subgradients III

Lemma (Exercise 28)

If f : dom(f)→ R is differentiable at x ∈ dom(f), then ∂f(x) ⊆ {∇f(x)}.
Either exactly one subgradient ∇f(x). . .

x y

f(y)

f(x) +∇f(x)>(y − x)

. . . or no subgradient at all.

x

f(y)

f(x) +∇f(x)>(y − x)

y

EPFL Optimization for Machine Learning CS-439 10/30

Subgradient characterization of convexity

“convex = subgradients everywhere”

Lemma (Exercise 29)

A function f : dom(f)→ R is convex if and only if dom(f) is convex and ∂f(x) 6= ∅
for all x ∈ dom(f).

Subgradient of a function

g is a subgradient of f (not necessarily convex) at x if

f(y) ≥ f(x) + gT (y − x) for all y

(⇐⇒ (g,−1) supports epi f at (x, f(x)))

PSfrag replacements

x1 x2

f(x1) + gT
1 (x − x1)

f(x2) + gT
2 (x − x2)

f(x2) + gT
3 (x − x2)

f(x)

g2, g3 are subgradients at x2; g1 is a subgradient at x1

Prof. S. Boyd, EE392o, Stanford University 2

EPFL Optimization for Machine Learning CS-439 11/30

Convex and Lipschitz = bounded subgradients

Lemma (Exercise 30)

Let f : dom(f)→ R be convex, dom(f) open, B ∈ R+. Then the following two
statements are equivalent.

(i) ‖g‖ ≤ B for all x ∈ dom(f) and all g ∈ ∂f(x).
(ii) |f(x)− f(y)| ≤ B‖x− y‖ for all x,y ∈ dom(f).

EPFL Optimization for Machine Learning CS-439 12/30

Subgradient optimality condition

Lemma
Suppose that f : dom(f)→ R and x ∈ dom(f). If 0 ∈ ∂f(x), then x is a global
minimum.

Proof.
By definition of subgradients, g = 0 ∈ ∂f(x) gives

f(y) ≥ f(x) + g>(y − x) = f(x)

for all y ∈ dom(f), so x is a global minimum.

EPFL Optimization for Machine Learning CS-439 13/30

Differentiability of convex functions
How “wild” can a non-differentiable convex function be?

Weierstrass function: a function that is continuous everywhere but differentiable
nowhere

https://commons.wikimedia.org/wiki/File:WeierstrassFunction.svg

EPFL Optimization for Machine Learning CS-439 14/30

https://commons.wikimedia.org/wiki/File:WeierstrassFunction.svg

Differentiability of convex functions

Theorem ([Roc97, Theorem 25.5])

A convex function f : dom(f)→ R is differentiable almost everywhere.

In other words:

I Set of points where f is non-differentiable has measure 0 (no volume).

I For all x ∈ dom(f) and all ε > 0, there is a point x′ such that ‖x− x′‖ < ε and
f is differentiable at x′.

EPFL Optimization for Machine Learning CS-439 15/30

The subgradient descent algorithm

Subgradient descent: choose x0 ∈ Rd.

Let gt ∈ ∂f(xt)
xt+1 := xt − γtgt

for times t = 0, 1, . . . , and stepsizes γt ≥ 0.

Stepsize can vary with time!

This is possible in (projected) gradient descent as well, but so far, we didn’t need it.

EPFL Optimization for Machine Learning CS-439 16/30

Lipschitz convex functions: O(1/ε2) steps
Theorem
Let f : Rd → R be convex and B-Lipschitz continuous with a global minimum x?;
furthermore, suppose that ‖x0 − x?‖ ≤ R. Choosing the constant stepsize

γ :=
R

B
√
T
,

subgradient descent yields

1

T

T−1∑
t=0

f(xt)− f(x?) ≤
RB√
T
.

Proof is identical to the one of Theorem 2.1, except. . .

I In vanilla analyis, now use gt ∈ ∂f(xt) instead of gt = ∇f(xt).
I Inequality f(xt)− f(x?) ≤ g>t (xt − x?) now follows from subgradient property

instead of first-order charaterization of convexity.

EPFL Optimization for Machine Learning CS-439 17/30

Optimality of first-order methods

With all the convergence rates we have seen so far, a very natural question to ask is if
these rates are best possible or not. Surprisingly, the rate can indeed not be improved
in general.

Theorem (Nesterov)

For any T ≤ d− 1 and starting point x0, there is a function f in the problem class of
B-Lipschitz functions over Rd, such that any (sub)gradient method has an objective
error at least

f(xT)− f(x?) ≥
RB

2(1 +
√
T + 1)

.

EPFL Optimization for Machine Learning CS-439 18/30

Smooth (non-differentiable) functions?
They don’t exist (Exercise 31)!

x

f(x) = |x|

0

At 0, graph can’t be below a tangent paraboloid.

Can we still improve over O(1/ε2) steps for Lipschitz functions?

Yes, if we also require strong convexity (graph is above not too flat tangent
paraboloids).

Subgradient of a function

g is a subgradient of f (not necessarily convex) at x if

f(y) ≥ f(x) + gT (y − x) for all y

(⇐⇒ (g,−1) supports epi f at (x, f(x)))

PSfrag replacements

x1 x2

f(x1) + gT
1 (x − x1)

f(x2) + gT
2 (x − x2)

f(x2) + gT
3 (x − x2)

f(x)

g2, g3 are subgradients at x2; g1 is a subgradient at x1

Prof. S. Boyd, EE392o, Stanford University 2

EPFL Optimization for Machine Learning CS-439 19/30

Strongly convex functions

“Not too flat”

Straightforward generalization to the non-differentiable case:

Definition
Let f : dom(f)→ R be convex, µ ∈ R+, µ > 0. Function f is called strongly convex
(with parameter µ) if

f(y) ≥ f(x) + g>(y − x) +
µ

2
‖x− y‖2, ∀x,y ∈ dom(f), ∀g ∈ ∂f(x).

EPFL Optimization for Machine Learning CS-439 20/30

Strongly convex functions: characterization via “normal” convexity

Lemma (Exercise 33)

Let f : dom(f)→ R be convex, dom(f) open, µ ∈ R+, µ > 0. f is strongly convex
with parameter µ if and only if fµ : dom(f)→ R defined by

fµ(x) = f(x)− µ

2
‖x‖2 , x ∈ dom(f)

is convex.

EPFL Optimization for Machine Learning CS-439 21/30

Tame strong convexity

For fast convergence, we consider additional assumptions.

Smoothness? - Not an option in the non-differentiable case (Exercise 31).

Instead: assume that all subgradients gt that we encounter during the algorithm are
bounded in norm.

May be realistic if. . .

I we start close to optimality

I we run projected subgradient descent over a compact set X

May also fail!

I Over Rd, strong convexity and bounded subgradients contradict each other!
(Exercise 35).

EPFL Optimization for Machine Learning CS-439 22/30

Tame strong convexity: O(1/ε) steps

Theorem
Let f : Rd → R be strongly convex with parameter µ > 0 and let x? be the unique
global minimum of f . With decreasing step size

γt :=
2

µ(t+ 1)
, t > 0,

subgradient descent yields

f

(
2

T (T + 1)

T∑
t=1

t · xt
)
− f(x?) ≤ 2B2

µ(T + 1)
,

where B = maxTt=1 ‖gt‖. ↑
convex combination of iterates

EPFL Optimization for Machine Learning CS-439 23/30

Tame strong convexity: O(1/ε) steps II

Proof.
Vanilla analysis (gt ∈ ∂f(xt)):

g>t (xt − x?) =
γt
2
‖gt‖2 +

1

2γt

(
‖xt − x?‖2 − ‖xt+1 − x?‖2

)
.

Lower bound from strong convexity:

g>t (xt − x?) ≥ f(xt)− f(x?) +
µ

2
‖xt − x?‖2.

Putting it together (with ‖gt‖2 ≤ B2):

f(xt)− f(x?) ≤
B2γt
2

+
(γ−1t − µ)

2
‖xt − x?‖2 − γ−1t

2
‖xt+1 − x?‖2 .

Summing over t = 1, . . . , T : we used to have telescoping (γt = γ, µ = 0). . .

EPFL Optimization for Machine Learning CS-439 24/30

Tame strong convexity: O(1/ε) steps III

Proof.
So far we have:

f(xt)− f(x?) ≤
B2γt
2

+
(γ−1t − µ)

2
‖xt − x?‖2 − γ−1t

2
‖xt+1 − x?‖2 .

To get telescoping, we would need γ−1t = γ−1t+1 − µ.

Works with γ−1t = µ(1 + t), but not γ−1t = µ(1 + t)/2 (the choice here).

Exercise 36: what happens with γ−1t = µ(1 + t)?

Now: what happens with γ−1t = µ(1 + t)/2 (the choice here)?

EPFL Optimization for Machine Learning CS-439 25/30

Tame strong convexity: O(1/ε) steps IV

Proof.
So far we have:

f(xt)− f(x?) ≤
B2γt
2

+
(γ−1t − µ)

2
‖xt − x?‖2 − γ−1t

2
‖xt+1 − x?‖2 .

Plug in γ−1t = µ(1 + t)/2 and multiply with t on both sides:

t ·
(
f(xt)−f(x?)

)
≤ B2t

µ(t+ 1)
+
µ

4

(
t(t− 1) ‖xt−x?‖2 − (t+ 1)t ‖xt+1−x?‖2

)
≤ B2

µ
+
µ

4

(
t(t− 1) ‖xt − x?‖2 − (t+ 1)t ‖xt+1 − x?‖2

)
.

EPFL Optimization for Machine Learning CS-439 26/30

Tame strong convexity: O(1/ε) steps V

Proof.
We have

t ·
(
f(xt)−f(x?)

)
≤ B2t

µ(t+ 1)
+
µ

4

(
t(t− 1) ‖xt−x?‖2 − (t+ 1)t ‖xt+1−x?‖2

)
≤ B2

µ
+
µ

4

(
t(t− 1) ‖xt − x?‖2 − (t+ 1)t ‖xt+1 − x?‖2

)
.

Now we get telescoping. . .

T∑
t=1

t ·
(
f(xt)− f(x?)

)
≤ TB2

µ
+
µ

4

(
0− T (T + 1) ‖xT+1 − x?‖2

)
≤ TB2

µ
.

EPFL Optimization for Machine Learning CS-439 27/30

Tame strong convexity: O(1/ε) steps VI
Proof.
Almost done:

T∑
t=1

t ·
(
f(xt)− f(x?)

)
≤ TB2

µ
+
µ

4

(
0− T (T + 1) ‖xT+1 − x?‖2

)
≤ TB2

µ
.

Since

2

T (T + 1)

T∑
t=1

t = 1,

Jensen’s inequality yields

f

(
2

T (T + 1)

T∑
t=1

t · xt
)
− f(x?) ≤ 2

T (T + 1)

T∑
t=1

t ·
(
f(xt)− f(x?)

)
.

EPFL Optimization for Machine Learning CS-439 28/30

Tame strong convexity: Discussion

f

(
2

T (T + 1)

T∑
t=1

t · xt
)
− f(x?) ≤ 2B2

µ(T + 1)
,

Weighted average of iterates achieves the bound (later iterates have more weight)

Bound is independent of initial distance ‖x0 − x?‖. . .

. . . but not really: B typically depends on ‖x0 − x?‖ (for example, B = O(‖x0 − x?‖)
for quadratic functions)

Recall: we can only hope that B is small (can be checked while running the algorithm)

What if we don’t know the parameter µ of strong convexity?

→ Bad luck! In practice, try some µ’s, pick best solution obtained

EPFL Optimization for Machine Learning CS-439 29/30

Bibliography

R. Tyrrell Rockafellar.
Convex Analysis.
Princeton Landmarks in Mathematics. Princeton University Press, 1997.

EPFL Optimization for Machine Learning CS-439 30/30

