forked from apmoore1/semeval
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathaspect_finsvr.py
72 lines (60 loc) · 2.97 KB
/
aspect_finsvr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
from semeval import helper as helper
from semeval.svrs.feature_extractors.Tokeniser import Tokeniser
from semeval.svrs.feature_extractors.WordReplacement import WordReplacement
from semeval.svrs.feature_extractors.FeatureExtractor import FeatureExtractor
from semeval.svrs.feature_extractors.ToList import ToList
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.metrics import make_scorer
from sklearn.model_selection import GridSearchCV
from sklearn.pipeline import FeatureUnion
from sklearn.pipeline import Pipeline
from sklearn import svm
def train(train_data, train_sentiments, n_jobs=-1, n_cv=10,
scorer=make_scorer(helper.cosine_score)):
train_comp_names = ('train companies', [data['aspects'] for data in train_data])
pos_word = ('Excellent word', ['excellent'])
neg_word = ('Poor word', ['poor'])
fin_word2vec_model = helper.fin_word_vector()
union_parameters = {
'union__ngrams__tokeniser__ngram_range' : [(1,2)],
'union__ngrams__tokeniser__tokeniser_func' : [helper.unitok_tokens],
'union__ngrams__text_extract__feature' : ['text'],
'union__ngrams__compextract__words_replace' : [train_comp_names],
'union__ngrams__compextract__replacement' : ['companyname'],
'union__ngrams__compextract__expand' : [None],
'union__ngrams__posextract__words_replace' : [pos_word],
'union__ngrams__posextract__replacement' : ['posword'],
'union__ngrams__posextract__expand' : [fin_word2vec_model],
'union__ngrams__posextract__expand_top_n' : [10],
'union__ngrams__negextract__words_replace' : [neg_word],
'union__ngrams__negextract__replacement' : ['negword'],
'union__ngrams__negextract__expand' : [fin_word2vec_model],
'union__ngrams__negextract__expand_top_n' : [10],
'union__ngrams__count_grams__binary' : [True],
'union__target_extract__aspect__feature' : ['aspects'],
'union__target_extract__count_grams__binary': [True],
'clf__C' : [0.1],
'clf__epsilon' : [0.01]
}
union_pipeline = Pipeline([
('union', FeatureUnion([
('ngrams', Pipeline([
('text_extract', FeatureExtractor()),
('tokeniser', Tokeniser()),
('compextract', WordReplacement()),
('posextract', WordReplacement()),
('negextract', WordReplacement()),
('count_grams', CountVectorizer(analyzer=helper.analyzer))
])),
('target_extract', Pipeline([
('aspect', FeatureExtractor()),
('aspect_list', ToList()),
('count_grams', CountVectorizer(analyzer=helper.analyzer))
])),
])),
('clf', svm.LinearSVR())
])
grid_search = GridSearchCV(union_pipeline, param_grid=union_parameters, cv=n_cv,
scoring=scorer, n_jobs=n_jobs)
grid_clf = grid_search.fit(train_data, train_sentiments)
return grid_clf