DeepCNV_Seqv2
Folders and files
Name | Name | Last commit date | ||
---|---|---|---|---|
parent directory.. | ||||
1. foder structure ./data/ # data samples ./data/train/1/ # Positive training images samples ./data/train/0/ # Negative training images samples ./data/val/1/ # Positive validation images samples ./data/val/0/ # Negative validation images samples ./data/test/1/ # Positive testing images samples ./data/test/0/ # Negative testing images samples ./res # folder to store results ./best_model_seq.hdf5 # a pretrained model 2. To use the script to predict the images, follow the steps below: a. To train the model run "python train.py img_folder saved_model_name results_file" e.g. python blend.py data/ res/model.hdf5 res/res.csv b. To make prediction with a pretrained model run "python predict.py img_folder saved_model_name results_file" e.g. python predict.py data/ res/model.hdf5 res/res.csv 3. The output includes: a. trained model b. prediction for testing samples 4. The packages version: python 3.7.6 tensorflow 2.1.0