- Isaac Gym: High Performance GPU-Based Physics Simulation For Robot Learning: https://arxiv.org/abs/2108.10470
- Transferring Dexterous Manipulation from GPU Simulation to a Remote Real-World TriFinger: https://s2r2-ig.github.io/ https://arxiv.org/abs/2108.09779
- Is Independent Learning All You Need in the StarCraft Multi-Agent Challenge? https://arxiv.org/abs/2011.09533
Implemented in Pytorch:
- PPO with the support of asymmetric actor-critic variant
- Support of end-to-end GPU accelerated training pipeline with Isaac Gym and Brax
- Masked actions support
- Multi-agent training, decentralized and centralized critic variants
- Self-play
Implemented in Tensorflow 1.x (not updates now):
- Rainbow DQN
- A2C
- PPO
For maximum training performance a preliminary installation of Pytorch 1.9+ with CUDA 11.1 is highly recommended:
conda install pytorch torchvision cudatoolkit=11.1 -c pytorch -c nvidia
or:
pip install torch==1.9.0+cu111 torchvision==0.10.0+cu111 -f https://download.pytorch.org/whl/torch_stable.htm
Then:
pip install rl-games
NVIDIA Isaac Gym
Download and follow the installation instructions from https://developer.nvidia.com/isaac-gym
Run from python/rlgpu
directory:
Ant
python rlg_train.py --task Ant --headless
python rlg_train.py --task Ant --play --checkpoint nn/Ant.pth --num_envs 100
Humanoid
python rlg_train.py --task Humanoid --headless
python rlg_train.py --task Humanoid --play --checkpoint nn/Humanoid.pth --num_envs 100
Shadow Hand block orientation task
python rlg_train.py --task ShadowHand --headless
python rlg_train.py --task ShadowHand --play --checkpoint nn/ShadowHand.pth --num_envs 100
Atari Pong
python runner.py --train --file rl_games/configs/atari/ppo_pong.yaml
python runner.py --play --file rl_games/configs/atari/ppo_pong.yaml --checkpoint nn/PongNoFrameskip.pth
Brax Ant
python runner.py --train --file rl_games/configs/brax/ppo_ant.yaml
python runner.py --play --file rl_games/configs/atari/ppo_ant.yaml --checkpoint nn/Ant_brax.pth
1.1.0
- Added to pypi:
pip install rl-games
- Added reporting env (sim) step fps, without policy inference. Improved naming.
- Renames in yaml config for better readability: steps_num to horizon_length amd lr_threshold to kl_threshold
- Some of the supported envs are not installed with setup.py, you need to manually install them
- Starting from rl-games 1.1.0 old yaml configs won't be compatible with the new version:
steps_num
should be changed tohorizon_length
amdlr_threshold
tokl_threshold