-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathoffice_home.py
358 lines (274 loc) · 12.1 KB
/
office_home.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
# Copyright (c) 2024, NVIDIA Corporation & Affiliates. All rights reserved.
#
# This work is made available under the Nvidia Source Code License-NC.
# To view a copy of this license, visit
# https://github.com/NVlabs/PerAda/blob/main/LICENSE
import os
import os.path as osp
import glob
import tarfile
import zipfile
import numpy as np
import gdown
from PIL import Image
import torchvision.transforms as T
from torch.utils.data import Dataset as TorchDataset
import torch
def check_isfile(fpath):
"""Check if the given path is a file.
Args:
fpath (str): file path.
Returns:
bool
"""
isfile = osp.isfile(fpath)
if not isfile:
print('No file found at "{}"'.format(fpath))
return isfile
def listdir_nohidden(path, sort=False):
"""List non-hidden items in a directory.
Args:
path (str): directory path.
sort (bool): sort the items.
"""
items = [f for f in os.listdir(path) if not f.startswith(".")]
if sort:
items.sort()
return items
class Datum:
"""Data instance which defines the basic attributes.
Args:
impath (str): image path.
label (int): class label.
domain (int): domain label.
classname (str): class name.
"""
def __init__(self, impath="", label=0, domain=0, classname=""):
assert isinstance(impath, str)
assert check_isfile(impath)
self._impath = impath
self._label = label
self._domain = domain
self._classname = classname
@property
def impath(self):
return self._impath
@property
def label(self):
return self._label
@property
def domain(self):
return self._domain
@property
def classname(self):
return self._classname
def read_image(path):
"""Read image from path using ``PIL.Image``.
Args:
path (str): path to an image.
Returns:
PIL image
"""
return Image.open(path).convert("RGB")
class DatasetWrapper(TorchDataset):
def __init__(self, data_source, transform=None, is_train=False):
self.data_source = data_source
self.transform = transform # accept list (tuple) as input
self.is_train = is_train
# Augmenting an image K>1 times is only allowed during training
# Apply transformations to an image K times (during training)
self.k_tfm = 1 if is_train else 1
self.return_img0 = False
if self.k_tfm > 1 and transform is None:
raise ValueError(
"Cannot augment the image {} times "
"because transform is None".format(self.k_tfm)
)
to_tensor = []
to_tensor += [T.Resize((224,224))]
to_tensor += [T.ToTensor()]
normalize = T.Normalize(
# Mean and std (default: ImageNet)
mean=[0.485, 0.456, 0.406], std= [0.229, 0.224, 0.225]
)
to_tensor += [normalize]
self.to_tensor = T.Compose(to_tensor)
def __len__(self):
return len(self.data_source)
def __getitem__(self, idx):
item = self.data_source[idx]
output = {
"label": item.label,
"domain": item.domain,
"impath": item.impath
}
img0 = read_image(item.impath)
if self.transform is not None:
if isinstance(self.transform, (list, tuple)):
for i, tfm in enumerate(self.transform):
img = self._transform_image(tfm, img0)
keyname = "img"
if (i + 1) > 1:
keyname += str(i + 1)
output[keyname] = img
else:
img = self._transform_image(self.transform, img0)
output["img"] = img
else:
output["img"] = img0
# if self.return_img0:
output["img0"] = self.to_tensor(img0) # without any augmentation
return output["img0"], output["label"]
def _transform_image(self, tfm, img0):
img_list = []
for k in range(self.k_tfm):
img_list.append(tfm(img0))
img = img_list
if len(img) == 1:
img = img[0]
return img
class OfficeHome(object):
"""Office-Home.
Statistics:
- Around 15,500 images.
- 65 classes related to office and home objects.
- 4 domains: Art, Clipart, Product, Real World.
- URL: http://hemanthdv.org/OfficeHome-Dataset/.
Reference:
- Venkateswara et al. Deep Hashing Network for Unsupervised
Domain Adaptation. CVPR 2017.
"""
dataset_dir = "office_home_dg"
domains = ["art", "clipart", "product", "real_world"]
dname2domain={"art":0, "clipart":1, "product":2, "real_world":3}
data_url = "https://drive.google.com/uc?id=1gkbf_KaxoBws-GWT3XIPZ7BnkqbAxIFa"
def __init__(self, root ='data', ):
self.dataset_dir = osp.join(root, self.dataset_dir)
if not osp.exists(self.dataset_dir):
dst = osp.join(root, "office_home_dg.zip")
self.download_data(self.data_url, dst, from_gdrive=True)
self.local_train_list, self.server_val_list = self.read_personalized_data(dataset_dir= self.dataset_dir, input_domains= self.domains, split= "train", server_ratio=0.1)
self.local_test_list, _ = self.read_personalized_data(dataset_dir= self.dataset_dir, input_domains= self.domains, split= "test")
self.server_val_all = sum(self.server_val_list, [])
self.server_test_all = sum(self.local_test_list, [])
def get_data_loaders (self, batch_size = 64, test_batch_size =64, server_batch_size=128,kd_data_fraction=1):
num_clients = len(self.domains)
train_data = {}
test_data = {}
for user_id in range(num_clients):
train_data.update({user_id: {'dataloader': torch.utils.data.DataLoader(DatasetWrapper(self.local_train_list[user_id],is_train=True), batch_size= batch_size, num_workers=2, pin_memory=True,
shuffle =True),
'indices': self.local_train_list[user_id] }})
test_data.update({user_id: {'dataloader': torch.utils.data.DataLoader(DatasetWrapper(self.local_test_list[user_id]), batch_size= test_batch_size, num_workers=2, pin_memory=True,
shuffle =True),
'indices': self.local_test_list[user_id]}})
clients = {
'train_users': list(train_data.keys()),
'test_users': list(test_data.keys())
}
val_dataloader = torch.utils.data.DataLoader(DatasetWrapper(self.server_val_all), batch_size= server_batch_size, num_workers=2, pin_memory=True)
kd_idx = np.random.choice(list(set(range(len(self.server_val_all)))) , int(len(self.server_val_all)*kd_data_fraction) , replace=False)
print("kd_idx len", len(kd_idx), "out of", len(self.server_val_all))
kd_dataloader = torch.utils.data.DataLoader(DatasetWrapper(self.server_val_all), batch_size= server_batch_size, num_workers=2, pin_memory=True,
sampler=torch.utils.data.sampler.SubsetRandomSampler(kd_idx))
test_dataloader = torch.utils.data.DataLoader(DatasetWrapper(self.server_test_all), batch_size= server_batch_size, num_workers=2, pin_memory=True)
return clients, kd_dataloader, train_data, test_data, val_dataloader,test_dataloader
def read_personalized_data(self,dataset_dir, input_domains, split,server_ratio =0):
def _load_data_from_directory(directory):
folders = listdir_nohidden(directory)
folders.sort()
items_ = []
for label, folder in enumerate(folders):
impaths = glob.glob(osp.join(directory, folder, "*.jpg"))
for impath in impaths:
items_.append((impath, label))
return items_
def _get_data_list(path_list ):
itms= []
for impath, label in path_list:
class_name = impath.split("/")[-2].lower()
item = Datum(
impath=impath,
label=label,
domain=self.dname2domain[dname],
classname=class_name
)
itms.append(item)
return itms
local_data_items_list =[]
server_data_items_list =[]
for _, dname in enumerate(input_domains):
if split == "train":
train_dir = osp.join(dataset_dir, dname, "train")
impath_label_list = _load_data_from_directory(train_dir)
total_number_samples= len(impath_label_list)
server_idx = np.random.choice(list(set(range(total_number_samples))), int(total_number_samples*server_ratio), replace=False)
local_idx = [i for i in range(total_number_samples) if i not in server_idx]
server_impath_label_list = [impath_label_list[i] for i in server_idx]
local_impath_label_list = [impath_label_list[i] for i in local_idx]
server_data_items = _get_data_list(server_impath_label_list )
local_data_items = _get_data_list(local_impath_label_list )
local_data_items_list.append(local_data_items)
server_data_items_list.append(server_data_items)
print(dname, "local_data_items", len(local_data_items), "server_data_items", len(server_data_items))
elif split == "test":
split_dir = osp.join(dataset_dir, dname, "val")
impath_label_list = _load_data_from_directory(split_dir)
local_data_items = _get_data_list(impath_label_list )
local_data_items_list.append(local_data_items)
print(dname, "local_data_items", len(local_data_items))
return local_data_items_list, server_data_items_list
def read_data(self,dataset_dir, input_domains, split):
def _load_data_from_directory(directory):
folders = listdir_nohidden(directory)
folders.sort()
items_ = []
for label, folder in enumerate(folders):
impaths = glob.glob(osp.join(directory, folder, "*.jpg"))
for impath in impaths:
items_.append((impath, label))
return items_
items = []
for _, dname in enumerate(input_domains):
if split == "all":
train_dir = osp.join(dataset_dir, dname, "train")
impath_label_list = _load_data_from_directory(train_dir)
val_dir = osp.join(dataset_dir, dname, "val")
impath_label_list += _load_data_from_directory(val_dir)
else:
split_dir = osp.join(dataset_dir, dname, split)
impath_label_list = _load_data_from_directory(split_dir)
print(impath_label_list)
for impath, label in impath_label_list:
class_name = impath.split("/")[-2].lower()
item = Datum(
impath=impath,
label=label,
domain=self.dname2domain[dname],
classname=class_name
)
items.append(item)
return items
def download_data(self, url, dst, from_gdrive=True):
if not osp.exists(osp.dirname(dst)):
os.makedirs(osp.dirname(dst))
if from_gdrive:
gdown.download(url, dst, quiet=False)
else:
raise NotImplementedError
print("Extracting file ...")
if dst.endswith(".zip"):
zip_ref = zipfile.ZipFile(dst, "r")
zip_ref.extractall(osp.dirname(dst))
zip_ref.close()
elif dst.endswith(".tar"):
tar = tarfile.open(dst, "r:")
tar.extractall(osp.dirname(dst))
tar.close()
elif dst.endswith(".tar.gz"):
tar = tarfile.open(dst, "r:gz")
tar.extractall(osp.dirname(dst))
tar.close()
else:
raise NotImplementedError
print("File extracted to {}".format(osp.dirname(dst)))