Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

standardise_ctd: matrices not getting converted to sparse #73

Closed
bschilder opened this issue Jul 22, 2022 · 1 comment
Closed

standardise_ctd: matrices not getting converted to sparse #73

bschilder opened this issue Jul 22, 2022 · 1 comment
Assignees
Labels

Comments

@bschilder
Copy link
Collaborator

1. Bug description

Only the specificity quantiles matrices are getting converted to sparse format, making CTDs larger than they need to be.

Expected behaviour

Make all matrices in CTD sparse.

2. Reproducible example

Code

ctd2 <- EWCE::standardise_ctd(ctd)
ctd <- ewceData::ctd()
EWCE:::is_sparse_matrix(ctd2[[1]]$mean_exp) # FALSE
EWCE:::is_sparse_matrix(ctd2[[1]]$specificity) # FALSE
EWCE:::is_sparse_matrix(ctd2[[1]]$specificity_quantiles) # TRUE

3. Session info

(Add output of the R function utils::sessionInfo() below. This helps us assess version/OS conflicts which could be causing bugs.)

R Under development (unstable) (2022-02-25 r81808)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 20.04.3 LTS

Matrix products: default
BLAS/LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.8.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C               LC_TIME=en_US.UTF-8       
 [4] LC_COLLATE=en_US.UTF-8     LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                  LC_ADDRESS=C              
[10] LC_TELEPHONE=C             LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] ewceData_1.5.0      ExperimentHub_2.5.0 AnnotationHub_3.5.0 BiocFileCache_2.5.0 dbplyr_2.2.1       
 [6] BiocGenerics_0.43.0 sp_1.5-0            SeuratObject_4.1.0  Seurat_4.1.1        echoconda_0.99.6   
[11] scKirby_0.1.0       EWCE_1.5.3          RNOmni_1.0.0        dplyr_1.0.9        

loaded via a namespace (and not attached):
  [1] pbapply_1.5-0                 lattice_0.20-45               vctrs_0.4.1                  
  [4] expm_0.999-6                  fastICA_1.2-3                 usethis_2.1.6                
  [7] mgcv_1.8-40                   blob_1.2.3                    survival_3.3-1               
 [10] spatstat.data_2.2-0           later_1.3.0                   nloptr_2.0.3                 
 [13] DBI_1.1.3                     R.utils_2.12.0                SingleCellExperiment_1.19.0  
 [16] rappdirs_0.3.3                uwot_0.1.11                   zlibbioc_1.43.0              
 [19] rgeos_0.5-9                   htmlwidgets_1.5.4             mvtnorm_1.1-3                
 [22] GlobalOptions_0.1.2           future_1.26.1                 leiden_0.4.2                 
 [25] parallel_4.2.0                irlba_2.3.5                   Rcpp_1.0.9                   
 [28] readr_2.1.2                   KernSmooth_2.23-20            promises_1.2.0.1             
 [31] gdata_2.18.0.1                DDRTree_0.1.5                 DelayedArray_0.23.0          
 [34] limma_3.53.4                  pkgload_1.3.0                 clusterGeneration_1.3.7      
 [37] fs_1.5.2                      googleAuthR_2.0.0             fastmatch_1.1-3              
 [40] mnormt_2.1.0                  basilisk_1.9.2                digest_0.6.29                
 [43] png_0.1-7                     qlcMatrix_0.9.7               sctransform_0.3.3            
 [46] cowplot_1.1.1                 here_1.0.1                    pkgconfig_2.0.3              
 [49] docopt_0.7.1                  spatstat.random_2.2-0         iterators_1.0.14             
 [52] minqa_1.2.4                   reticulate_1.25               SummarizedExperiment_1.27.1  
 [55] circlize_0.4.15               GetoptLong_1.0.5              xfun_0.31                    
 [58] zoo_1.8-10                    tidyselect_1.1.2              reshape2_1.4.4               
 [61] purrr_0.3.4                   ica_1.0-3                     gprofiler2_0.2.1             
 [64] viridisLite_0.4.0             rtracklayer_1.57.0            pkgbuild_1.3.1               
 [67] rlang_1.0.4                   glue_1.6.2                    RColorBrewer_1.1-3           
 [70] orthogene_1.3.1               pals_1.7                      registry_0.5-1               
 [73] matrixStats_0.62.0            MatrixGenerics_1.9.1          stringr_1.4.0                
 [76] ggsignif_0.6.3                labeling_0.4.2                httpuv_1.6.5                 
 [79] class_7.3-20                  webshot_0.5.3                 jsonlite_1.8.0               
 [82] XVector_0.37.0                sceasy_0.0.6                  bit_4.0.4                    
 [85] mime_0.12                     gridExtra_2.3                 gplots_3.1.3                 
 [88] Rsamtools_2.13.3              Exact_3.1                     stringi_1.7.8                
 [91] processx_3.7.0                spatstat.sparse_2.1-1         scattermore_0.8              
 [94] yulab.utils_0.0.5             quadprog_1.5-8                bitops_1.0-7                 
 [97] cli_3.3.0                     rhdf5filters_1.9.0            maps_3.4.0                   
[100] RSQLite_2.2.15                tidyr_1.2.0                   heatmaply_1.3.0              
[103] pheatmap_1.0.12               homologene_1.4.68.19.3.27     data.table_1.14.2            
[106] HGNChelper_0.8.1              rstudioapi_0.13               TSP_1.2-1                    
[109] GenomicAlignments_1.33.0      nlme_3.1-158                  phangorn_2.9.0               
[112] VariantAnnotation_1.43.2      listenv_0.8.0                 miniUI_0.1.1.1               
[115] gridGraphics_0.5-1            leidenbase_0.1.11             R.oo_1.25.0                  
[118] urlchecker_1.0.1              sessioninfo_1.2.2             readxl_1.4.0                 
[121] lifecycle_1.0.1               munsell_0.5.0                 cellranger_1.1.0             
[124] R.methodsS3_1.8.2             mapproj_1.2.8                 caTools_1.18.2               
[127] codetools_0.2-18              coda_0.19-4                   Biobase_2.57.1               
[130] GenomeInfoDb_1.33.3           lmtest_0.9-40                 ontologyIndex_2.7            
[133] xtable_1.8-4                  ROCR_1.0-11                   BiocManager_1.30.18          
[136] scatterplot3d_0.3-41          abind_1.4-5                   farver_2.1.1                 
[139] parallelly_1.32.1             RANN_2.6.1                    aplot_0.1.6                  
[142] sparsesvd_0.2                 ggtree_3.5.1                  GenomicRanges_1.49.0         
[145] BiocIO_1.7.1                  GEOquery_2.65.2               RcppAnnoy_0.0.19             
[148] goftest_1.2-3                 patchwork_1.1.1               tibble_3.1.7                 
[151] ggdendro_0.1.23               profvis_0.3.7                 dichromat_2.0-0.1            
[154] cluster_2.1.3                 future.apply_1.9.0            dendextend_1.16.0            
[157] GeneOverlap_1.33.0            Matrix_1.4-1                  tidytree_0.3.9               
[160] ellipsis_0.3.2                prettyunits_1.1.1             ggridges_0.5.3               
[163] igraph_1.3.4                  remotes_2.4.2                 downloadR_0.99.3             
[166] slam_0.1-50                   gargle_1.2.0                  basilisk.utils_1.9.1         
[169] phytools_1.0-3                spatstat.utils_2.3-1          htmltools_0.5.3              
[172] piggyback_0.1.4               yaml_2.3.5                    GenomicFeatures_1.49.5       
[175] utf8_1.2.2                    plotly_4.10.0                 interactiveDisplayBase_1.35.0
[178] XML_3.99-0.10                 e1071_1.7-11                  ggpubr_0.4.0                 
[181] fitdistrplus_1.1-8            BiocParallel_1.31.10          bit64_4.0.5                  
[184] rootSolve_1.8.2.3             foreach_1.5.2                 Biostrings_2.65.1            
[187] spatstat.core_2.4-4           combinat_0.0-8                progressr_0.10.1             
[190] MAGMA.Celltyping_2.0.4        devtools_2.4.4                evaluate_0.15                
[193] memoise_2.0.1                 VGAM_1.1-7                    tzdb_0.3.0                   
[196] callr_3.7.1                   lmom_2.9                      ps_1.7.1                     
[199] curl_4.3.2                    fansi_1.0.3                   tensor_1.5                   
[202] cachem_1.0.6                  deldir_1.0-6                  babelgene_22.3               
[205] dir.expiry_1.5.0              ggplot2_3.3.6                 rjson_0.2.21                 
[208] rstatix_0.7.0                 ggrepel_0.9.1                 clue_0.3-61                  
[211] rprojroot_2.0.3               tools_4.2.0                   magrittr_2.0.3               
[214] RCurl_1.98-1.7                proxy_0.4-27                  car_3.1-0                    
[217] ape_5.6-2                     ggplotify_0.1.0               xml2_1.3.3                   
[220] httr_1.4.3                    assertthat_0.2.1              rmarkdown_2.14               
[223] boot_1.3-28                   globals_0.15.1                R6_2.5.1                     
[226] Rhdf5lib_1.19.2               progress_1.2.2                KEGGREST_1.37.3              
[229] treeio_1.21.0                 gtools_3.9.3                  shape_1.4.6                  
[232] corrplot_0.92                 BiocVersion_3.16.0            HDF5Array_1.25.1             
[235] rhdf5_2.41.1                  splines_4.2.0                 carData_3.0-5                
[238] ggfun_0.0.6                   colorspace_2.0-3              generics_0.1.3               
[241] stats4_4.2.0                  pillar_1.8.0                  anndata_0.7.5.3              
[244] HSMMSingleCell_1.17.0         GenomeInfoDbData_1.2.8        plyr_1.8.7                   
[247] gtable_0.3.0                  monocle_2.25.1                restfulr_0.0.15              
[250] knitr_1.39                    ComplexHeatmap_2.13.0         biomaRt_2.53.2               
[253] IRanges_2.31.0                fastmap_1.1.0                 seriation_1.3.6              
[256] doParallel_1.0.17             AnnotationDbi_1.59.1          broom_1.0.0                  
[259] BSgenome_1.65.2               scales_1.2.0                  filelock_1.0.2               
[262] backports_1.4.1               plotrix_3.8-2                 S4Vectors_0.35.1             
[265] lme4_1.1-30                   gld_2.6.5                     hms_1.1.1                    
[268] Rtsne_0.16                    shiny_1.7.2                   MungeSumstats_1.5.5          
[271] polyclip_1.10-0               grid_4.2.0                    numDeriv_2016.8-1.1          
[274] DescTools_0.99.45             lazyeval_0.2.2                crayon_1.5.1                 
[277] MASS_7.3-58                   viridis_0.6.2                 rpart_4.1.16                 
[280] compiler_4.2.0                spatstat.geom_2.4-0   

@bschilder bschilder added the bug label Jul 22, 2022
@bschilder bschilder self-assigned this Jul 22, 2022
@bschilder
Copy link
Collaborator Author

Also, make standardise_ctd more generalizable to all matrices stored in CTD, not just those I've hard-coded into the function.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
Projects
None yet
Development

No branches or pull requests

1 participant