We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
standardise_ctd
Only the specificity quantiles matrices are getting converted to sparse format, making CTDs larger than they need to be.
Make all matrices in CTD sparse.
ctd2 <- EWCE::standardise_ctd(ctd) ctd <- ewceData::ctd() EWCE:::is_sparse_matrix(ctd2[[1]]$mean_exp) # FALSE EWCE:::is_sparse_matrix(ctd2[[1]]$specificity) # FALSE EWCE:::is_sparse_matrix(ctd2[[1]]$specificity_quantiles) # TRUE
(Add output of the R function utils::sessionInfo() below. This helps us assess version/OS conflicts which could be causing bugs.)
utils::sessionInfo()
R Under development (unstable) (2022-02-25 r81808) Platform: x86_64-pc-linux-gnu (64-bit) Running under: Ubuntu 20.04.3 LTS Matrix products: default BLAS/LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.8.so locale: [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C LC_TIME=en_US.UTF-8 [4] LC_COLLATE=en_US.UTF-8 LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8 [7] LC_PAPER=en_US.UTF-8 LC_NAME=C LC_ADDRESS=C [10] LC_TELEPHONE=C LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C attached base packages: [1] stats graphics grDevices utils datasets methods base other attached packages: [1] ewceData_1.5.0 ExperimentHub_2.5.0 AnnotationHub_3.5.0 BiocFileCache_2.5.0 dbplyr_2.2.1 [6] BiocGenerics_0.43.0 sp_1.5-0 SeuratObject_4.1.0 Seurat_4.1.1 echoconda_0.99.6 [11] scKirby_0.1.0 EWCE_1.5.3 RNOmni_1.0.0 dplyr_1.0.9 loaded via a namespace (and not attached): [1] pbapply_1.5-0 lattice_0.20-45 vctrs_0.4.1 [4] expm_0.999-6 fastICA_1.2-3 usethis_2.1.6 [7] mgcv_1.8-40 blob_1.2.3 survival_3.3-1 [10] spatstat.data_2.2-0 later_1.3.0 nloptr_2.0.3 [13] DBI_1.1.3 R.utils_2.12.0 SingleCellExperiment_1.19.0 [16] rappdirs_0.3.3 uwot_0.1.11 zlibbioc_1.43.0 [19] rgeos_0.5-9 htmlwidgets_1.5.4 mvtnorm_1.1-3 [22] GlobalOptions_0.1.2 future_1.26.1 leiden_0.4.2 [25] parallel_4.2.0 irlba_2.3.5 Rcpp_1.0.9 [28] readr_2.1.2 KernSmooth_2.23-20 promises_1.2.0.1 [31] gdata_2.18.0.1 DDRTree_0.1.5 DelayedArray_0.23.0 [34] limma_3.53.4 pkgload_1.3.0 clusterGeneration_1.3.7 [37] fs_1.5.2 googleAuthR_2.0.0 fastmatch_1.1-3 [40] mnormt_2.1.0 basilisk_1.9.2 digest_0.6.29 [43] png_0.1-7 qlcMatrix_0.9.7 sctransform_0.3.3 [46] cowplot_1.1.1 here_1.0.1 pkgconfig_2.0.3 [49] docopt_0.7.1 spatstat.random_2.2-0 iterators_1.0.14 [52] minqa_1.2.4 reticulate_1.25 SummarizedExperiment_1.27.1 [55] circlize_0.4.15 GetoptLong_1.0.5 xfun_0.31 [58] zoo_1.8-10 tidyselect_1.1.2 reshape2_1.4.4 [61] purrr_0.3.4 ica_1.0-3 gprofiler2_0.2.1 [64] viridisLite_0.4.0 rtracklayer_1.57.0 pkgbuild_1.3.1 [67] rlang_1.0.4 glue_1.6.2 RColorBrewer_1.1-3 [70] orthogene_1.3.1 pals_1.7 registry_0.5-1 [73] matrixStats_0.62.0 MatrixGenerics_1.9.1 stringr_1.4.0 [76] ggsignif_0.6.3 labeling_0.4.2 httpuv_1.6.5 [79] class_7.3-20 webshot_0.5.3 jsonlite_1.8.0 [82] XVector_0.37.0 sceasy_0.0.6 bit_4.0.4 [85] mime_0.12 gridExtra_2.3 gplots_3.1.3 [88] Rsamtools_2.13.3 Exact_3.1 stringi_1.7.8 [91] processx_3.7.0 spatstat.sparse_2.1-1 scattermore_0.8 [94] yulab.utils_0.0.5 quadprog_1.5-8 bitops_1.0-7 [97] cli_3.3.0 rhdf5filters_1.9.0 maps_3.4.0 [100] RSQLite_2.2.15 tidyr_1.2.0 heatmaply_1.3.0 [103] pheatmap_1.0.12 homologene_1.4.68.19.3.27 data.table_1.14.2 [106] HGNChelper_0.8.1 rstudioapi_0.13 TSP_1.2-1 [109] GenomicAlignments_1.33.0 nlme_3.1-158 phangorn_2.9.0 [112] VariantAnnotation_1.43.2 listenv_0.8.0 miniUI_0.1.1.1 [115] gridGraphics_0.5-1 leidenbase_0.1.11 R.oo_1.25.0 [118] urlchecker_1.0.1 sessioninfo_1.2.2 readxl_1.4.0 [121] lifecycle_1.0.1 munsell_0.5.0 cellranger_1.1.0 [124] R.methodsS3_1.8.2 mapproj_1.2.8 caTools_1.18.2 [127] codetools_0.2-18 coda_0.19-4 Biobase_2.57.1 [130] GenomeInfoDb_1.33.3 lmtest_0.9-40 ontologyIndex_2.7 [133] xtable_1.8-4 ROCR_1.0-11 BiocManager_1.30.18 [136] scatterplot3d_0.3-41 abind_1.4-5 farver_2.1.1 [139] parallelly_1.32.1 RANN_2.6.1 aplot_0.1.6 [142] sparsesvd_0.2 ggtree_3.5.1 GenomicRanges_1.49.0 [145] BiocIO_1.7.1 GEOquery_2.65.2 RcppAnnoy_0.0.19 [148] goftest_1.2-3 patchwork_1.1.1 tibble_3.1.7 [151] ggdendro_0.1.23 profvis_0.3.7 dichromat_2.0-0.1 [154] cluster_2.1.3 future.apply_1.9.0 dendextend_1.16.0 [157] GeneOverlap_1.33.0 Matrix_1.4-1 tidytree_0.3.9 [160] ellipsis_0.3.2 prettyunits_1.1.1 ggridges_0.5.3 [163] igraph_1.3.4 remotes_2.4.2 downloadR_0.99.3 [166] slam_0.1-50 gargle_1.2.0 basilisk.utils_1.9.1 [169] phytools_1.0-3 spatstat.utils_2.3-1 htmltools_0.5.3 [172] piggyback_0.1.4 yaml_2.3.5 GenomicFeatures_1.49.5 [175] utf8_1.2.2 plotly_4.10.0 interactiveDisplayBase_1.35.0 [178] XML_3.99-0.10 e1071_1.7-11 ggpubr_0.4.0 [181] fitdistrplus_1.1-8 BiocParallel_1.31.10 bit64_4.0.5 [184] rootSolve_1.8.2.3 foreach_1.5.2 Biostrings_2.65.1 [187] spatstat.core_2.4-4 combinat_0.0-8 progressr_0.10.1 [190] MAGMA.Celltyping_2.0.4 devtools_2.4.4 evaluate_0.15 [193] memoise_2.0.1 VGAM_1.1-7 tzdb_0.3.0 [196] callr_3.7.1 lmom_2.9 ps_1.7.1 [199] curl_4.3.2 fansi_1.0.3 tensor_1.5 [202] cachem_1.0.6 deldir_1.0-6 babelgene_22.3 [205] dir.expiry_1.5.0 ggplot2_3.3.6 rjson_0.2.21 [208] rstatix_0.7.0 ggrepel_0.9.1 clue_0.3-61 [211] rprojroot_2.0.3 tools_4.2.0 magrittr_2.0.3 [214] RCurl_1.98-1.7 proxy_0.4-27 car_3.1-0 [217] ape_5.6-2 ggplotify_0.1.0 xml2_1.3.3 [220] httr_1.4.3 assertthat_0.2.1 rmarkdown_2.14 [223] boot_1.3-28 globals_0.15.1 R6_2.5.1 [226] Rhdf5lib_1.19.2 progress_1.2.2 KEGGREST_1.37.3 [229] treeio_1.21.0 gtools_3.9.3 shape_1.4.6 [232] corrplot_0.92 BiocVersion_3.16.0 HDF5Array_1.25.1 [235] rhdf5_2.41.1 splines_4.2.0 carData_3.0-5 [238] ggfun_0.0.6 colorspace_2.0-3 generics_0.1.3 [241] stats4_4.2.0 pillar_1.8.0 anndata_0.7.5.3 [244] HSMMSingleCell_1.17.0 GenomeInfoDbData_1.2.8 plyr_1.8.7 [247] gtable_0.3.0 monocle_2.25.1 restfulr_0.0.15 [250] knitr_1.39 ComplexHeatmap_2.13.0 biomaRt_2.53.2 [253] IRanges_2.31.0 fastmap_1.1.0 seriation_1.3.6 [256] doParallel_1.0.17 AnnotationDbi_1.59.1 broom_1.0.0 [259] BSgenome_1.65.2 scales_1.2.0 filelock_1.0.2 [262] backports_1.4.1 plotrix_3.8-2 S4Vectors_0.35.1 [265] lme4_1.1-30 gld_2.6.5 hms_1.1.1 [268] Rtsne_0.16 shiny_1.7.2 MungeSumstats_1.5.5 [271] polyclip_1.10-0 grid_4.2.0 numDeriv_2016.8-1.1 [274] DescTools_0.99.45 lazyeval_0.2.2 crayon_1.5.1 [277] MASS_7.3-58 viridis_0.6.2 rpart_4.1.16 [280] compiler_4.2.0 spatstat.geom_2.4-0
The text was updated successfully, but these errors were encountered:
Also, make standardise_ctd more generalizable to all matrices stored in CTD, not just those I've hard-coded into the function.
Sorry, something went wrong.
bschilder
No branches or pull requests
1. Bug description
Only the specificity quantiles matrices are getting converted to sparse format, making CTDs larger than they need to be.
Expected behaviour
Make all matrices in CTD sparse.
2. Reproducible example
Code
3. Session info
(Add output of the R function
utils::sessionInfo()
below. This helps us assess version/OS conflicts which could be causing bugs.)The text was updated successfully, but these errors were encountered: