Memory efficient trie (prefix tree) library based on LOUDS.
Master API Docs | Released API Docs | Benchmark Results | Changelog
To use trie-rs, add the following to your Cargo.toml
file:
[dependencies]
trie-rs = "0.1" # NOTE: Replace to latest minor version.
use std::str;
use trie_rs::TrieBuilder;
let mut builder = TrieBuilder::new(); // Inferred `TrieBuilder<u8>` automatically
builder.push("すし");
builder.push("すしや");
builder.push("すしだね");
builder.push("すしづめ");
builder.push("すしめし");
builder.push("すしをにぎる");
builder.push("すし"); // Word `push`ed twice is just ignored.
builder.push("🍣");
let trie = builder.build();
// exact_match(): Find a word exactly match to query.
assert_eq!(trie.exact_match("すし"), true);
assert_eq!(trie.exact_match("🍣"), true);
assert_eq!(trie.exact_match("🍜"), false);
// predictive_search(): Find words which include `query` as their prefix.
let results_in_u8s: Vec<Vec<u8>> = trie.predictive_search("すし");
let results_in_str: Vec<&str> = results_in_u8s
.iter()
.map(|u8s| str::from_utf8(u8s).unwrap())
.collect();
assert_eq!(
results_in_str,
vec![
"すし",
"すしだね",
"すしづめ",
"すしめし",
"すしや",
"すしをにぎる"
] // Sorted by `Vec<u8>`'s order
);
// common_prefix_search(): Find words which is included in `query`'s prefix.
let results_in_u8s: Vec<Vec<u8>> = trie.common_prefix_search("すしや");
let results_in_str: Vec<&str> = results_in_u8s
.iter()
.map(|u8s| str::from_utf8(u8s).unwrap())
.collect();
assert_eq!(
results_in_str,
vec![
"すし",
"すしや",
] // Sorted by `Vec<u8>`'s order
);
TrieBuilder
is implemented using generic type like following:
impl<Label: Ord + Clone> TrieBuilder<Label> {
...
pub fn push<Arr: AsRef<[Label]>>(&mut self, word: Arr) { ... }
...
}
In the above Usage Overview
example, we used Label=u8, Arr=&str
.
Here shows other Label
and Arr
type examples.
Say Label
is English words and Arr
is English phrases.
use trie_rs::TrieBuilder;
let mut builder = TrieBuilder::new();
builder.push(vec!["a", "woman"]);
builder.push(vec!["a", "woman", "on", "the", "beach"]);
builder.push(vec!["a", "woman", "on", "the", "run"]);
let trie = builder.build();
assert_eq!(
trie.exact_match(vec!["a", "woman", "on", "the", "beach"]),
true
);
assert_eq!(
trie.predictive_search(vec!["a", "woman", "on"]),
vec![
["a", "woman", "on", "the", "beach"],
["a", "woman", "on", "the", "run"],
],
);
assert_eq!(
trie.common_prefix_search(vec!["a", "woman", "on", "the", "beach"]),
vec![vec!["a", "woman"], vec!["a", "woman", "on", "the", "beach"]],
);
Say Label
is a digit in Pi (= 3.14...) and Arr is a window to separate pi's digit by 10.
use trie_rs::TrieBuilder;
let mut builder = TrieBuilder::<u8>::new(); // Pi = 3.14...
builder.push([1, 4, 1, 5, 9, 2, 6, 5, 3, 5]);
builder.push([8, 9, 7, 9, 3, 2, 3, 8, 4, 6]);
builder.push([2, 6, 4, 3, 3, 8, 3, 2, 7, 9]);
builder.push([6, 9, 3, 9, 9, 3, 7, 5, 1, 0]);
builder.push([5, 8, 2, 0, 9, 7, 4, 9, 4, 4]);
builder.push([5, 9, 2, 3, 0, 7, 8, 1, 6, 4]);
builder.push([0, 6, 2, 8, 6, 2, 0, 8, 9, 9]);
builder.push([8, 6, 2, 8, 0, 3, 4, 8, 2, 5]);
builder.push([3, 4, 2, 1, 1, 7, 0, 6, 7, 9]);
builder.push([8, 2, 1, 4, 8, 0, 8, 6, 5, 1]);
builder.push([3, 2, 8, 2, 3, 0, 6, 6, 4, 7]);
builder.push([0, 9, 3, 8, 4, 4, 6, 0, 9, 5]);
builder.push([5, 0, 5, 8, 2, 2, 3, 1, 7, 2]);
builder.push([5, 3, 5, 9, 4, 0, 8, 1, 2, 8]);
let trie = builder.build();
assert_eq!(trie.exact_match([5, 3, 5, 9, 4, 0, 8, 1, 2, 8]), true);
assert_eq!(
trie.predictive_search([3]),
vec![
[3, 2, 8, 2, 3, 0, 6, 6, 4, 7],
[3, 4, 2, 1, 1, 7, 0, 6, 7, 9],
],
);
assert_eq!(
trie.common_prefix_search([1, 4, 1, 5, 9, 2, 6, 5, 3, 5]),
vec![[1, 4, 1, 5, 9, 2, 6, 5, 3, 5]],
);
- Generic type support: As the above examples show, trie-rs can be used for searching not only UTF-8 string but also other data types.
- Based on louds-rs, which is fast, parallelized, and memory efficient.
- Latest benchmark results are always accessible: trie-rs is continuously benchmarked in Travis CI using Criterion.rs. Graphical benchmark results are published here.
edict.furigana
is used for benchmark.
This file is constructed in the following step:
- Download
edict.gz
from EDICT. - Convert it from original EUC into UTF-8.
- Translate it into CSV file with edict-to-csv.
- Extract field $1 for Hiragana/Katakana words, and field $3 for other (like Kanji) words.
- Translate Katakana into Hiragana with kana2hira.
Many thanks for these dictionaries and tools.
trie-rs uses semantic versioning.
Since current major version is 0, minor version update might involve breaking public API change (although it is carefully avoided).
trie-rs is continuously tested with these Rust versions in Travis CI:
- 1.33.0
- Latest stable version
So it expectedly works with Rust 1.33.0 and any newer versions.
Older versions may also work, but are not tested or guaranteed.
Any kind of pull requests are appreciated.
README.md
is generated from$ cargo readme
command. Do not manually updateREADME.md
but editsrc/lib.rs
and then$ cargo readme > README.md
.- Travis CI automatically does the following commit & push to your pull-requests:
$ cargo readme > README.md
$ cargo fmt --all
MIT OR Apache-2.0