forked from ChenRocks/UNITER
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdistributed.py
209 lines (169 loc) · 6.15 KB
/
distributed.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
"""
Copyright (c) Microsoft Corporation.
Licensed under the MIT license.
distributed API using Horovod
Modified from OpenNMT's native pytorch distributed utils
(https://github.com/OpenNMT/OpenNMT-py)
"""
import math
import pickle
import torch
from horovod import torch as hvd
def all_reduce_and_rescale_tensors(tensors, rescale_denom):
"""All-reduce and rescale tensors at once (as a flattened tensor)
Args:
tensors: list of Tensors to all-reduce
rescale_denom: denominator for rescaling summed Tensors
"""
# buffer size in bytes, determine equiv. # of elements based on data type
sz = sum(t.numel() for t in tensors)
buffer_t = tensors[0].new(sz).zero_()
# copy tensors into buffer_t
offset = 0
for t in tensors:
numel = t.numel()
buffer_t[offset:offset+numel].copy_(t.view(-1))
offset += numel
# all-reduce and rescale
hvd.allreduce_(buffer_t[:offset])
buffer_t.div_(rescale_denom)
# copy all-reduced buffer back into tensors
offset = 0
for t in tensors:
numel = t.numel()
t.view(-1).copy_(buffer_t[offset:offset+numel])
offset += numel
def all_reduce_and_rescale_tensors_chunked(tensors, rescale_denom,
buffer_size=10485760):
"""All-reduce and rescale tensors in chunks of the specified size.
Args:
tensors: list of Tensors to all-reduce
rescale_denom: denominator for rescaling summed Tensors
buffer_size: all-reduce chunk size in bytes
"""
# buffer size in bytes, determine equiv. # of elements based on data type
buffer_t = tensors[0].new(
math.ceil(buffer_size / tensors[0].element_size())).zero_()
buffer = []
def all_reduce_buffer():
# copy tensors into buffer_t
offset = 0
for t in buffer:
numel = t.numel()
buffer_t[offset:offset+numel].copy_(t.view(-1))
offset += numel
# all-reduce and rescale
hvd.allreduce_(buffer_t[:offset])
buffer_t.div_(rescale_denom)
# copy all-reduced buffer back into tensors
offset = 0
for t in buffer:
numel = t.numel()
t.view(-1).copy_(buffer_t[offset:offset+numel])
offset += numel
filled = 0
for t in tensors:
sz = t.numel() * t.element_size()
if sz > buffer_size:
# tensor is bigger than buffer, all-reduce and rescale directly
hvd.allreduce_(t)
t.div_(rescale_denom)
elif filled + sz > buffer_size:
# buffer is full, all-reduce and replace buffer with grad
all_reduce_buffer()
buffer = [t]
filled = sz
else:
# add tensor to buffer
buffer.append(t)
filled += sz
if len(buffer) > 0:
all_reduce_buffer()
def broadcast_tensors(tensors, root_rank, buffer_size=10485760):
"""broadcast tensors in chunks of the specified size.
Args:
tensors: list of Tensors to broadcast
root_rank: rank to broadcast
buffer_size: broadcast chunk size in bytes
"""
# buffer size in bytes, determine equiv. # of elements based on data type
buffer_t = tensors[0].new(
math.ceil(buffer_size / tensors[0].element_size())).zero_()
buffer = []
def broadcast_buffer():
# copy tensors into buffer_t
offset = 0
for t in buffer:
numel = t.numel()
buffer_t[offset:offset+numel].copy_(t.view(-1))
offset += numel
# broadcast
hvd.broadcast_(buffer_t[:offset], root_rank)
# copy all-reduced buffer back into tensors
offset = 0
for t in buffer:
numel = t.numel()
t.view(-1).copy_(buffer_t[offset:offset+numel])
offset += numel
filled = 0
for t in tensors:
sz = t.numel() * t.element_size()
if sz > buffer_size:
# tensor is bigger than buffer, broadcast directly
hvd.broadcast_(t, root_rank)
elif filled + sz > buffer_size:
# buffer is full, broadcast and replace buffer with tensor
broadcast_buffer()
buffer = [t]
filled = sz
else:
# add tensor to buffer
buffer.append(t)
filled += sz
if len(buffer) > 0:
broadcast_buffer()
def _encode(enc, max_size, use_max_size=False):
enc_size = len(enc)
enc_byte = max(math.floor(math.log(max_size, 256)+1), 1)
if use_max_size:
# this is used for broadcasting
buffer_ = torch.cuda.ByteTensor(max_size+enc_byte)
else:
buffer_ = torch.cuda.ByteTensor(enc_size+enc_byte)
remainder = enc_size
for i in range(enc_byte):
base = 256 ** (enc_byte-i-1)
buffer_[i] = remainder // base
remainder %= base
buffer_[enc_byte:enc_byte+enc_size] = torch.ByteTensor(list(enc))
return buffer_, enc_byte
def _decode(buffer_, enc_byte):
size = sum(256 ** (enc_byte-i-1) * buffer_[i].item()
for i in range(enc_byte))
bytes_list = bytes(buffer_[enc_byte:enc_byte+size].tolist())
shift = size + enc_byte
return bytes_list, shift
_BUFFER_SIZE = 4096
def all_gather_list(data):
"""Gathers arbitrary data from all nodes into a list."""
enc = pickle.dumps(data)
enc_size = len(enc)
max_size = hvd.allgather(torch.tensor([enc_size]).cuda()).max().item()
in_buffer, enc_byte = _encode(enc, max_size)
out_buffer = hvd.allgather(in_buffer[:enc_byte+enc_size])
results = []
for _ in range(hvd.size()):
bytes_list, shift = _decode(out_buffer, enc_byte)
out_buffer = out_buffer[shift:]
result = pickle.loads(bytes_list)
results.append(result)
return results
def any_broadcast(data, root_rank):
"""broadcast arbitrary data from root_rank to all nodes."""
enc = pickle.dumps(data)
max_size = hvd.allgather(torch.tensor([len(enc)]).cuda()).max().item()
buffer_, enc_byte = _encode(enc, max_size, use_max_size=True)
hvd.broadcast_(buffer_, root_rank)
bytes_list, _ = _decode(buffer_, enc_byte)
result = pickle.loads(bytes_list)
return result