forked from gpu-mode/lectures
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_train.py
224 lines (185 loc) · 8.8 KB
/
model_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import time
import uuid
from functools import partial
import torch
from torch import nn
from torch.utils.data import DataLoader
from loguru import logger
import json
from tqdm import tqdm
from criteo_dataset import CriteoParquetDataset
from model import DLRM, read_metadata, Parameters as ModelParameters
from torch.profiler import profile
from torch.utils.tensorboard import SummaryWriter
def trace_handler(prof: profile, results_dir: str):
logger.info("\n" + prof.key_averages().table(
sort_by="self_cuda_time_total", row_limit=-1))
prof.export_chrome_trace(f"/{results_dir}/test_trace_" + str(uuid.uuid4()) + ".json")
import click
@click.command()
@click.option('--config', default="model_hyperparameters_small.json", help='Model parameters filename')
@click.option('--use_torch_compile', is_flag=True, default=False, help='Use torch.compile if set')
def main(config: str, use_torch_compile: bool):
# # The flag below controls whether to allow TF32 on matmul. This flag defaults to False
# # in PyTorch 1.12 and later.
# torch.backends.cuda.matmul.allow_tf32 = True
#
# # The flag below controls whether to allow TF32 on cuDNN. This flag defaults to True.
# torch.backends.cudnn.allow_tf32 = True
# Load hyperparameters
with open(config, 'r') as f:
hyperparameters = json.load(f)
modifier = config.replace(".", "").replace("/", "").replace("json", "")
timing_context = {}
logger.info("Hyperparameters: {}".format(hyperparameters))
metadata = read_metadata(hyperparameters['metadata_path'])
logger.info("Loaded metadata")
train_dataset = CriteoParquetDataset(hyperparameters['data_path']['train'])
valid_dataset = CriteoParquetDataset(hyperparameters['data_path']['validation'])
logger.info("Loaded datasets")
model_parameters = ModelParameters(
dense_input_feature_size=hyperparameters['dense_input_feature_size'],
sparse_embedding_sizes=hyperparameters['sparse_embedding_sizes'],
dense_mlp=hyperparameters['dense_mlp'],
prediction_hidden_sizes=hyperparameters['prediction_hidden_sizes'],
use_modulus_hash=hyperparameters['use_modulus_hash'],
)
dlrm = DLRM(metadata=metadata,
parameters=model_parameters,
device=hyperparameters['device']).to(hyperparameters['device'])
if use_torch_compile:
model = torch.compile(dlrm, fullgraph=True, mode="max-autotune")
else:
model = dlrm
optimizer = torch.optim.Adam(model.parameters(), lr=hyperparameters['learning_rate'])
# Binary Cross Entropy loss
criterion = nn.BCELoss()
batch_size_train = hyperparameters['batch_size']['train']
batch_size_valid = hyperparameters['batch_size']['validation']
# DataLoader for your dataset
train_loader = iter(DataLoader(train_dataset, batch_size=batch_size_train, shuffle=True))
valid_loader = iter(
DataLoader(valid_dataset, batch_size=batch_size_valid, shuffle=False))
_, dense, sparse = next(train_loader)
compile_start_time = time.time()
_ = model(dense.to(hyperparameters['device']), sparse.to(hyperparameters['device']))
logger.info("Compile Time taken: {:.2f}s".format(time.time() - compile_start_time))
# Number of epochs
num_epochs = hyperparameters['num_epochs']
torch.cuda.empty_cache()
# Initialize the best validation loss to a high value
best_valid_loss = float('inf')
start_time_all = time.time()
writer = SummaryWriter(log_dir=hyperparameters["tensorboard_dir"],
flush_secs=30,
filename_suffix=modifier)
prof = torch.profiler.profile(
activities=[
torch.profiler.ProfilerActivity.CPU,
torch.profiler.ProfilerActivity.CUDA,
],
schedule=torch.profiler.schedule(
wait=1,
warmup=1,
active=3,
repeat=1),
# on_trace_ready=partial(trace_handler,
# results_dir="./profiler_logs"),
on_trace_ready=torch.profiler.tensorboard_trace_handler(hyperparameters["tensorboard_dir"],
worker_name=modifier),
record_shapes=True,
profile_memory=True,
with_stack=True
)
prof.start()
# Training Loop
for epoch in range(num_epochs):
logger.info("Epoch: {}".format(epoch + 1))
start = time.time()
# Training Phase
train_loss = 0
correct_predictions = 0
total_predictions = 0
model.train()
for batch_idx in tqdm(range(hyperparameters['batches_per_epoch']), ncols=80):
labels, dense, sparse = next(train_loader)
labels = labels.to(hyperparameters['device'])
dense = dense.to(hyperparameters['device'])
sparse = sparse.to(hyperparameters['device'])
# Backward pass and optimization
optimizer.zero_grad()
outputs = model(dense, sparse)
loss = criterion(outputs, labels)
# logger.info("Zeroed gradients")
loss.backward()
# logger.info("Backward pass done")
optimizer.step()
# logger.info("Optimizer step done")
# logger.info("--- Backward pass and optimization done")
train_loss = train_loss + (
(loss.item() - train_loss) / (batch_idx + 1))
# Convert outputs probabilities to predicted class (0 or 1)
predicted = torch.sigmoid(outputs).data > 0.5
# Update total and correct predictions
total_predictions += labels.size(0)
correct_predictions += (predicted == labels).sum().item()
index = (epoch * hyperparameters['batches_per_epoch'] + batch_idx) * batch_size_train
writer.add_scalar("Loss/train", train_loss, index)
writer.add_scalar("Accuracy/train", correct_predictions / total_predictions,
index)
for name, t in timing_context.items():
writer.add_scalar(f"TrainingTime/{name}", t, index)
prof.step()
logger.info("Train Time taken: {:.2f}s".format(time.time() - start))
start = time.time()
# Validation Phase
model.eval()
with torch.no_grad():
total_predictions = 0
correct_predictions = 0
valid_loss = 0.0
for batch_idx in tqdm(range(hyperparameters['batches_per_epoch']), ncols=80):
labels, dense, sparse = next(valid_loader)
# Move data to the appropriate device
labels = labels.to(hyperparameters['device'])
dense = dense.to(hyperparameters['device'])
sparse = sparse.to(hyperparameters['device'])
# Forward pass
outputs = model(dense, sparse)
loss = criterion(outputs, labels)
valid_loss = valid_loss + (
(loss.item() - valid_loss) / (batch_idx + 1))
# Convert outputs probabilities to predicted class (0 or 1)
predicted = torch.sigmoid(outputs).data > 0.5
# Update total and correct predictions
total_predictions += labels.size(0)
correct_predictions += (predicted == labels).sum().item()
valid_accuracy = correct_predictions / total_predictions
index = (epoch * hyperparameters['batches_per_epoch'] + batch_idx) * batch_size_valid
writer.add_scalar("Loss/valid",
valid_loss,
index)
writer.add_scalar("Accuracy/valid",
valid_accuracy,
index)
for name, t in timing_context.items():
writer.add_scalar(f"ValidationTime/{name}", t,
index)
prof.step()
logger.info("Validation Time taken: {:.2f}s".format(time.time() - start))
logger.info("----------------------------------------------")
logger.info(f'Epoch [{epoch + 1}/{num_epochs}], '
f'Train Loss: {train_loss:.4f}, '
f'Valid Loss: {valid_loss:.4f}')
logger.info("----------------------------------------------")
# If the current validation loss is less than the best validation loss,
# save the model and update the best validation loss
if valid_loss < best_valid_loss:
best_valid_loss = valid_loss
torch.save(model.state_dict(), hyperparameters['model_path'])
logger.info(f'Validation loss decreased. Saving model...')
prof.stop()
writer.flush()
logger.info("Total Time taken: {:.2f}s".format(time.time() - start_time_all))
if __name__ == '__main__':
main()