-
Notifications
You must be signed in to change notification settings - Fork 122
/
Copy pathplot_well_comparison.py
executable file
·120 lines (97 loc) · 3.88 KB
/
plot_well_comparison.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
#!/usr/bin/python3
# Generates a PDF with plots of all summary curves from a reference
# case and a 'new' simulation.
import argparse
from datetime import datetime, timedelta
import matplotlib.pyplot as plt
from matplotlib.dates import DateFormatter
from matplotlib.backends.backend_pdf import PdfPages
import numpy as np
from opm.io.ecl import ESmry
import os
import pickle
from scipy import integrate, stats
# Run analysis of a test.
# Calculate the deviation for each curve
# and generate a pdf with plots ordered according to deviation
def run_analysis(ref_file_name, sys_file_name, test_name):
ref_file = ESmry(ref_file_name + '.SMSPEC')
sim_file = ESmry(sys_file_name + '.SMSPEC')
ref_time = ref_file.dates()
sim_time = sim_file.dates()
ref_time_in_secs = [(v - ref_time[0]).total_seconds() for v in ref_time]
sim_time_in_secs = [(v - sim_time[0]).total_seconds() for v in sim_time]
plt.rcParams['font.size'] = 8
# Attempt at sorting the graphs in descending eyeball norm order.
# - Normalize by inf-norm to get the same range in each graph, ie (0,1).
# - Convert graphs to probability distributions (ie integral under curve should be 1).
# - Use the wasserstein distance scaled by area under reference curve.
deviation={}
for r in ref_file.keys():
if r == 'TIME' or r == 'YEARS':
continue
try:
ref = ref_file[r]
sim = sim_file[r]
except:
continue
if len(ref) == 0 and len(sim) == 0:
continue
if not (any(ref) or any(sim)):
continue
ref /= np.linalg.norm(ref, np.inf)
sim /= np.linalg.norm(sim, np.inf)
A_ref = integrate.trapezoid(ref, ref_time_in_secs, 0.0)
A_sim = integrate.trapezoid(sim, sim_time_in_secs, 0.0)
deviation[r] = stats.wasserstein_distance(ref / A_ref, sim / A_sim) * A_ref
p = PdfPages(f'{test_name}.pdf')
for r in sorted(deviation, key = lambda x: deviation[x], reverse=True):
try:
ref = ref_file[r]
sim = sim_file[r]
except:
continue
fig, ax = plt.subplots()
ax.plot(ref_time, ref, linestyle='dashed', linewidth=0.5, marker='o', markersize=1.0)
ax.plot(sim_time, sim, linewidth=0.5, marker='x', markersize=1.0)
ax.legend(['Reference', 'New simulation'])
plt.title(r)
u = ref_file.units(r)
if u:
plt.ylabel(u)
myFmt = DateFormatter("%Y-%b")
ax.xaxis.set_major_formatter(myFmt)
ax.xaxis.set_major_locator(plt.MaxNLocator(20))
plt.grid()
fig.autofmt_xdate()
fig.savefig(p, format='pdf')
plt.close(fig)
p.close()
if os.path.exists('max_devs.pkl'):
with open('max_devs.pkl', 'rb') as f:
max_deviations = pickle.load(f)
else:
max_deviations = {}
max_dev = max(deviation, key = lambda x: deviation[x])
max_deviations[test_name] = deviation[max_dev]
with open('max_devs.pkl', 'wb') as f:
pickle.dump(max_deviations, f)
# Rename files to rank them according to maximum deviations
def reorder_files():
with open('max_devs.pkl', 'rb') as f:
max_deviations = pickle.load(f)
c = 1
for file in sorted(max_deviations, key = lambda x: max_deviations[x], reverse=True):
os.rename(f'{file}.pdf', f'{c:02d}_{file}.pdf')
c += 1
# Main code
parser = argparse.ArgumentParser('plot_well_comparison.py')
parser.add_argument('-c', help='Name of test to process', dest='test_name')
parser.add_argument('-r', help='Reference file', dest='ref_file')
parser.add_argument('-s', help='Simulation file', dest='sim_file')
parser.add_argument('-o', choices=['plot', 'rename'], help='Operation to do', required=True, dest='operation')
args = parser.parse_args()
if args.operation == 'plot':
run_analysis(args.ref_file, args.sim_file, args.test_name)
else:
reorder_files()