-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathgeneration.py
206 lines (173 loc) · 8.07 KB
/
generation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import torch
from transformers import GenerationConfig
from utils.chat_generation import generate_chat
from utils.general_prompter import GeneralPrompter, get_chat_content
from utils.smiles_canonicalization import canonicalize_molecule_smiles
from model import load_tokenizer_and_model
def tokenize(tokenizer, prompt, add_eos_token=True):
# there's probably a way to do this with the tokenizer settings
result = tokenizer(
prompt,
truncation=False,
padding=False,
return_tensors=None,
add_special_tokens=False,
)
if (
result["input_ids"][-1] != tokenizer.eos_token_id
and add_eos_token
):
result["input_ids"].append(tokenizer.eos_token_id)
result["attention_mask"].append(1)
result["labels"] = result["input_ids"].copy()
return result
def canonicalize_smiles_in_text(text, tags=('<SMILES>', '</SMILES>'), keep_text_unchanged_if_no_tags=True, keep_text_unchanged_if_error=False):
try:
left_tag, right_tag = tags
assert left_tag is not None
assert right_tag is not None
left_tag_pos = text.find(left_tag)
right_tag_pos = None
if left_tag_pos == -1:
assert right_tag not in text, 'The input text "%s" only contains the right tag "%s" but no left tag"%s"' % (text, right_tag, left_tag)
return text
else:
right_tag_pos = text.find(right_tag)
assert right_tag_pos is not None, 'The input text "%s" only contains the left tag "%s" but no right tag"%s"' % (text, left_tag, right_tag)
except AssertionError:
if keep_text_unchanged_if_no_tags:
return text
raise
smiles = text[left_tag_pos + len(left_tag) : right_tag_pos].strip()
try:
smiles = canonicalize_molecule_smiles(smiles, return_none_for_error=False)
except KeyboardInterrupt:
raise
except:
if keep_text_unchanged_if_error:
return text
raise
new_text = text[:left_tag_pos] + ('' if (left_tag_pos == 0 or text[left_tag_pos - 1] == ' ') else ' ') + left_tag + ' ' + smiles + ' ' + right_tag + ' ' + text[right_tag_pos + len(right_tag):].lstrip()
return new_text
class LlaSMolGeneration(object):
def __init__(self, model_name, base_model=None, device=None):
self.prompter = GeneralPrompter(get_chat_content)
self.tokenizer, self.model = load_tokenizer_and_model(model_name, base_model=base_model, device=device)
self.device = self.model.device # TODO: check if this can work
def create_sample(self, text, canonicalize_smiles=True, max_input_tokens=None):
if canonicalize_smiles:
real_text = canonicalize_smiles_in_text(text)
else:
real_text = text
sample = {'input_text': text}
chat = generate_chat(real_text, output_text=None)
full_prompt = self.prompter.generate_prompt(chat)
sample['real_input_text'] = full_prompt
tokenized_full_prompt = tokenize(self.tokenizer, full_prompt, add_eos_token=False)
sample.update(tokenized_full_prompt)
if max_input_tokens is not None and len(tokenized_full_prompt['input_ids']) > max_input_tokens:
sample['input_too_long'] = True
return sample
def _generate(self, input_ids, max_new_tokens=1024, **generation_settings):
generation_config = GenerationConfig(
pad_token_id=self.model.config.pad_token_id,
bos_token_id=self.model.config.bos_token_id,
eos_token_id=self.model.config.eos_token_id,
**generation_settings,
)
self.model.eval()
with torch.no_grad():
generation_output = self.model.generate(
input_ids=input_ids,
generation_config=generation_config,
return_dict_in_generate=True,
output_scores=True,
max_new_tokens=max_new_tokens,
)
s = generation_output.sequences
output = self.tokenizer.batch_decode(s, skip_special_tokens=False)
output_text = []
for output_item in output:
text = self.prompter.get_response(output_item)
output_text.append(text)
return output_text, output
def generate(self, input_text, batch_size=1, max_input_tokens=512, max_new_tokens=1024, canonicalize_smiles=True, print_out=False, **generation_settings):
if isinstance(input_text, str):
input_text = [input_text]
else:
input_text = list(input_text)
assert len(input_text) > 0
samples = []
for text in input_text:
sample = self.create_sample(text, canonicalize_smiles=canonicalize_smiles, max_input_tokens=max_input_tokens)
samples.append(sample)
all_outputs = []
k = 0
while True:
if k >= len(samples):
break
e = min(k + batch_size, len(samples))
batch_samples = []
skipped_samples = []
batch_outputs = []
original_index = {}
for bidx, sample in enumerate(samples[k: e]):
if 'input_too_long' in sample and sample['input_too_long']:
original_index[bidx] = ('s', len(skipped_samples))
skipped_samples.append(sample)
continue
original_index[bidx] = ('b', len(batch_samples))
batch_samples.append(sample)
if len(batch_samples) > 0:
input_ids = {'input_ids': [sample['input_ids'] for sample in batch_samples]}
input_ids = self.tokenizer.pad(
input_ids,
padding=True,
return_tensors='pt'
)
input_ids = input_ids['input_ids'].to(self.device)
batch_output_text, _ = self._generate(input_ids, max_new_tokens=max_new_tokens, **generation_settings)
num_batch_samples = len(batch_samples)
ko = 0
num_return_sequences = 1 if 'num_return_sequences' not in generation_settings else generation_settings['num_return_sequences']
for sample in range(num_batch_samples):
sample_outputs = []
for _ in range(num_return_sequences):
sample_outputs.append(batch_output_text[ko])
ko += 1
batch_outputs.append(sample_outputs)
new_batch_samples = []
new_batch_outputs = []
for bidx in sorted(original_index.keys()):
place, widx = original_index[bidx]
if place == 'b':
sample = batch_samples[widx]
output = batch_outputs[widx]
elif place == 's':
sample = skipped_samples[widx]
output = None
else:
raise ValueError(place)
new_batch_samples.append(sample)
new_batch_outputs.append(output)
batch_samples = new_batch_samples
batch_outputs = new_batch_outputs
assert len(batch_samples) == len(batch_outputs)
for sample, sample_outputs in zip(batch_samples, batch_outputs):
if print_out:
print('=============')
print('Input: %s' % sample['input_text'])
if sample_outputs is None:
print('Output: None (Because the input text exceeds the token limit (%d) )' % max_input_tokens)
else:
for idx, output_text in enumerate(sample_outputs, start=1):
print('Output %d: %s' % (idx, output_text))
print('\n')
log = {
'input_text': sample['input_text'],
'real_input_text': sample['real_input_text'],
'output': sample_outputs,
}
all_outputs.append(log)
k = e
return all_outputs