-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathtrain_tox
executable file
·405 lines (361 loc) · 14.2 KB
/
train_tox
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
#! /usr/bin/env python3
"""Train toxsmi predictor."""
import argparse
import json
import logging
import os
import sys
from copy import deepcopy
from time import time
import numpy as np
import pandas as pd
import pytoda.smiles.metadata as meta
# Ensure Ubuntu/rdkit compatibility
import torch
from paccmann_predictor.utils.hyperparams import OPTIMIZER_FACTORY
from paccmann_predictor.utils.interpret import (
monte_carlo_dropout,
test_time_augmentation,
)
from paccmann_predictor.utils.utils import get_device
from pytoda.datasets import AnnotatedDataset, SMILESTokenizerDataset
from pytoda.smiles.smiles_language import SMILESTokenizer
from pytoda.smiles.transforms import SMILESToMorganFingerprints
from pytoda.transforms import Compose, ToTensor
from sklearn.metrics import (
auc,
average_precision_score,
precision_recall_curve,
roc_curve,
)
from torch.utils.data.sampler import WeightedRandomSampler
from toxsmi.models import MODEL_FACTORY
from toxsmi.utils import disable_rdkit_logging
from toxsmi.utils.performance import PerformanceLogger
# setup logging
logging.basicConfig(stream=sys.stdout, level=logging.DEBUG)
parser = argparse.ArgumentParser()
parser.add_argument(
"--train",
"-train_scores_filepath",
type=str,
help="Path to the training toxicity scores (.csv)",
)
parser.add_argument(
"--test",
"-test_scores_filepath",
type=str,
help="Path to the test toxicity scores (.csv)",
)
parser.add_argument(
"--smi", "-smi_filepath", type=str, help="Path to the SMILES data (.smi)"
)
parser.add_argument(
"--model", "-model_path", type=str, help="Directory where the model will be stored."
)
parser.add_argument(
"--params", "-params_filepath", type=str, help="Path to the parameter file."
)
parser.add_argument("--name", "-training_name", type=str, help="Name for the training.")
parser.add_argument(
"--embedding",
"-embedding_path",
type=str,
default=None,
help="Optional path to a pickle object of a pretrained embedding.",
)
parser.add_argument(
"--finetune",
"-finetune_path",
type=str,
help="Path to a folder to restore model from.",
default="",
)
def main(
train_scores_filepath: str,
test_scores_filepath: str,
smi_filepath: str,
model_path: str,
params_filepath: str,
training_name: str,
embedding_path: str,
finetune_path: str,
):
logging.basicConfig(level=logging.INFO, format="%(message)s")
logger = logging.getLogger(f"{training_name}")
logger.setLevel(logging.INFO)
disable_rdkit_logging()
# Process parameter file:
params = {}
with open(params_filepath) as fp:
params.update(json.load(fp))
if embedding_path:
params["embedding_path"] = embedding_path
# Create model directory and dump files
print(model_path, training_name)
model_dir = os.path.join(model_path, training_name)
os.makedirs(os.path.join(model_dir, "weights"), exist_ok=True)
os.makedirs(os.path.join(model_dir, "results"), exist_ok=True)
with open(os.path.join(model_dir, "model_params.json"), "w") as fp:
json.dump(params, fp, indent=4)
smiles_language_filepath = os.path.join(os.path.dirname(meta.__file__), "tokenizer")
logger.info("Start data preprocessing...")
smiles_language = SMILESTokenizer(
vocab_file=smiles_language_filepath, # if None, new language is created
padding_length=params.get("padding_length", None),
randomize=False,
add_start_and_stop=params.get("start_stop_token", True),
padding=params.get("padding", True),
augment=params.get("augment_smiles", False),
canonical=params.get("canonical", False),
kekulize=params.get("kekulize", False),
all_bonds_explicit=params.get("bonds_explicit", False),
all_hs_explicit=params.get("all_hs_explicit", False),
remove_bonddir=params.get("remove_bonddir", False),
remove_chirality=params.get("remove_chirality", False),
selfies=params.get("selfies", False),
sanitize=params.get("sanitize", False),
)
# Prepare FP processing
if params.get("model_fn", "mca") == "dense":
# NOTE: Might not work out of the box with pytoda >0.1.1
morgan_transform = Compose(
[
SMILESToMorganFingerprints(
radius=params.get("fp_radius", 2),
bits=params.get("num_drug_features", 512),
chirality=params.get("fp_chirality", True),
),
ToTensor(get_device()),
]
)
def smiles_tensor_batch_to_fp(smiles):
"""To abuse SMILES dataset for FP usage"""
out = torch.Tensor(smiles.shape[0], params.get("num_drug_features", 256))
for ind, tensor in enumerate(smiles):
smiles = smiles_language.token_indexes_to_smiles(tensor.tolist())
out[ind, :] = torch.squeeze(morgan_transform(smiles))
return out
# Assemble datasets
smiles_dataset = SMILESTokenizerDataset(
smi_filepath, smiles_language=smiles_language
)
test_smiles_language = deepcopy(smiles_language)
test_smiles_language.set_smiles_transforms(
augment=False,
canonical=params.get("test_canonical", params.get("augment_smiles", False)),
)
# include arg label_columns if data file has any unwanted columns (such as index) to be ignored.
label_columns = params.get("label_columns", list(range(params["num_tasks"])))
train_dataset = AnnotatedDataset(
annotations_filepath=train_scores_filepath,
dataset=smiles_dataset,
label_columns=label_columns,
)
if params.get("keep_probs"):
# Asymetric sampling
keep_probs = params.get("keep_probs", (1, 1))
freqs = pd.read_csv(train_scores_filepath)["sampling_frequency"]
weights = [keep_probs[0] if x == "low" else keep_probs[1] for x in freqs]
sampler = WeightedRandomSampler(
weights,
num_samples=len(train_dataset),
replacement=True,
)
train_loader = torch.utils.data.DataLoader(
dataset=train_dataset,
batch_size=params["batch_size"],
shuffle=False,
drop_last=False,
num_workers=params.get("num_workers", 0),
sampler=sampler,
)
logger.info(f"Set up biased sampling with frequencies {keep_probs}")
else:
# Default data loader
train_loader = torch.utils.data.DataLoader(
dataset=train_dataset,
batch_size=params["batch_size"],
shuffle=True,
drop_last=True,
num_workers=params.get("num_workers", 0),
)
if params.get("uncertainty", True) and params.get("augment_test_data", False):
raise ValueError(
"Epistemic uncertainty evaluation not supported if augmentation "
"is not enabled for test data."
)
# Generally, if sanitize is True molecules are de-kekulized. Augmentation
# preserves the "kekulization", so if it is used, test data should be
# sanitized or canonicalized.
smiles_test_dataset = SMILESTokenizerDataset(
smi_filepath, smiles_language=test_smiles_language
)
logger.info("storing languages")
os.makedirs(os.path.join(model_dir, "smiles_language"), exist_ok=True)
smiles_language.save_pretrained(os.path.join(model_dir, "smiles_language"))
logger.info(
f"Language: {smiles_language.transform_smiles} and {smiles_language.transform_encoding}"
)
logger.info(
f"Test language: {test_smiles_language.transform_smiles} and {test_smiles_language.transform_encoding}"
)
# include arg label_columns if data file has any unwanted columns (such as index) to be ignored.
test_dataset = AnnotatedDataset(
annotations_filepath=test_scores_filepath,
dataset=smiles_test_dataset,
label_columns=label_columns,
)
test_loader = torch.utils.data.DataLoader(
dataset=test_dataset,
batch_size=params["batch_size"],
shuffle=False,
drop_last=False,
num_workers=params.get("num_workers", 0),
)
if params.get("confidence", False):
conf_smiles_language = deepcopy(test_smiles_language)
conf_smiles_language.set_smiles_transforms(
augment=True, # natively true
canonical=False,
kekulize=params.get("kekulize", False),
all_bonds_explicit=params.get("bonds_explicit", False),
all_hs_explicit=params.get("all_hs_explicit", False),
remove_bonddir=params.get("remove_bonddir", False),
remove_chirality=params.get("remove_chirality", False),
selfies=params.get("selfies", False),
sanitize=params.get("sanitize", False),
)
smiles_conf_dataset = SMILESTokenizerDataset(
smi_filepath, smiles_language=conf_smiles_language
)
conf_dataset = AnnotatedDataset(
annotations_filepath=test_scores_filepath, dataset=smiles_conf_dataset
)
conf_loader = torch.utils.data.DataLoader(
dataset=conf_dataset,
batch_size=params["batch_size"],
shuffle=False,
drop_last=False,
num_workers=params.get("num_workers", 0),
)
if not params.get("embedding", "learned") == "pretrained":
params.update({"smiles_vocabulary_size": smiles_language.number_of_tokens})
device = get_device()
logger.info(f"Device is {device}")
model = MODEL_FACTORY[params.get("model_fn", "mca")](params).to(device)
logger.info(model)
logger.info("Parameters follow")
for name, param in model.named_parameters():
logger.info((name, param.shape))
num_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
params.update({"number_of_parameters": num_params})
logger.info(f"Number of parameters {num_params}")
if finetune_path:
if os.path.isfile(finetune_path):
try:
model.load(finetune_path, map_location=device)
logger.info(f"Restored pretrained model {finetune_path}")
except Exception:
raise KeyError(f"Could not restore model from {finetune_path}")
else:
raise FileNotFoundError(f"Did not find model at {finetune_path}")
# Define optimizer
optimizer = OPTIMIZER_FACTORY[params.get("optimizer", "adam")](
model.parameters(), lr=params.get("lr", 0.00001)
)
# Overwrite params.json file with updated parameters.
with open(os.path.join(model_dir, "model_params.json"), "w") as fp:
json.dump(params, fp)
# Start training
logger.info("Training about to start...\n")
t = time()
# Set up the performance logger
task = "regression" if "cross" not in params["loss_fn"] else "binary_classification"
performer = PerformanceLogger(
model_path=model_dir,
task=task,
epochs=params["epochs"],
train_batches=len(train_loader),
test_batches=len(test_loader),
task_names=pd.read_csv(train_scores_filepath).columns[label_columns],
)
for epoch in range(params["epochs"]):
performer.epoch += 1
model.train()
logger.info(params_filepath.split("/")[-1])
logger.info(f"== Epoch [{epoch}/{params['epochs']}] ==")
train_loss = 0
for ind, (smiles, y) in enumerate(train_loader):
smiles = torch.squeeze(smiles.to(device))
# Transform smiles to FP if needed
if params.get("model_fn", "mca") == "dense":
smiles = smiles_tensor_batch_to_fp(smiles).to(device)
y_hat, pred_dict = model(smiles)
loss = model.loss(y_hat, y.to(device))
optimizer.zero_grad()
loss.backward()
optimizer.step()
train_loss += loss.item()
logger.info(
"\t **** TRAINING **** "
f"Epoch [{epoch + 1}/{params['epochs']}], "
f"loss: {train_loss / len(train_loader):.5f}. "
f"This took {time() - t:.1f} secs."
)
t = time()
# Measure validation performance
model.eval()
with torch.no_grad():
test_loss = 0
predictions = []
labels = []
for ind, (smiles, y) in enumerate(test_loader):
smiles = torch.squeeze(smiles.to(device))
# Transform smiles to FP if needed
if params.get("model_fn", "mca") == "dense":
smiles = smiles_tensor_batch_to_fp(smiles).to(device)
y_hat, pred_dict = model(smiles)
predictions.append(y_hat)
# Copy y tensor since loss function applies downstream
# modification
labels.append(y.clone())
loss = model.loss(y_hat, y.to(device))
test_loss += loss.item()
predictions = torch.cat(predictions, dim=0).cpu().numpy()
labels = torch.cat(labels, dim=0).cpu().numpy()
# performance.update
best = performer.report(labels, predictions, test_loss, model)
if best and params.get("confidence", False):
# Compute uncertainity estimates and save them
epistemic_conf = monte_carlo_dropout(
model, regime="loader", loader=conf_loader
)
aleatoric_conf = test_time_augmentation(
model, regime="loader", loader=conf_loader
)
np.save(
os.path.join(model_dir, "results", f"{best}_epistemic_conf.npy"),
epistemic_conf,
)
np.save(
os.path.join(model_dir, "results", f"{best}_aleatoric_conf.npy"),
aleatoric_conf,
)
if (epoch + 1) % params.get("save_model", 100) == 0:
performer.save_model(model, "epoch", str(epoch))
performer.final_report()
performer.save_model(model, "training", "done")
logger.info("Done with training, models saved, shutting down.")
if __name__ == "__main__":
args = parser.parse_args()
main(
args.train,
args.test,
args.smi,
args.model,
args.params,
args.name,
args.embedding,
args.finetune,
)