forked from SCLBD/BackdoorBench
-
Notifications
You must be signed in to change notification settings - Fork 0
/
visual_actdist.py
executable file
·247 lines (202 loc) · 9.21 KB
/
visual_actdist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
import sys
import os
sys.path.append(os.getcwd())
import yaml
import torch
import numpy as np
import torchvision.transforms as transforms
from matplotlib.patches import Rectangle, Patch
from utils.defense_utils.dbd.model.model import SelfModel, LinearModel
from utils.defense_utils.dbd.model.utils import (
get_network_dbd,
load_state,
get_criterion,
get_optimizer,
get_scheduler,
)
from utils.save_load_attack import load_attack_result
from utils.aggregate_block.model_trainer_generate import generate_cls_model
from utils.aggregate_block.fix_random import fix_random
from utils.aggregate_block.dataset_and_transform_generate import (
get_transform,
get_dataset_denormalization,
)
from visual_utils import *
# Basic setting: args
args = get_args()
with open(args.yaml_path, "r") as stream:
config = yaml.safe_load(stream)
config.update({k: v for k, v in args.__dict__.items() if v is not None})
args.__dict__ = config
args = preprocess_args(args)
fix_random(int(args.random_seed))
save_path_attack = "./record/" + args.result_file_attack
visual_save_path = save_path_attack + "/visual"
# Load result
if args.prototype:
result_attack = load_prototype_result(args, save_path_attack)
else:
result_attack = load_attack_result(save_path_attack + "/attack_result.pt")
selected_classes = np.arange(args.num_classes)
# Select classes to visualize
if args.num_classes > args.c_sub:
selected_classes = np.delete(selected_classes, args.target_class)
selected_classes = np.random.choice(
selected_classes, args.c_sub-1, replace=False)
selected_classes = np.append(selected_classes, args.target_class)
# keep the same transforms for train and test dataset for better visualization
result_attack["clean_train"].wrap_img_transform = result_attack["clean_test"].wrap_img_transform
result_attack["bd_train"].wrap_img_transform = result_attack["bd_test"].wrap_img_transform
# Create dataset
if args.visual_dataset == 'mixed':
bd_test_with_trans = result_attack["bd_test"]
visual_dataset = generate_mix_dataset(
bd_test_with_trans, args.target_class, args.pratio, selected_classes, max_num_samples=args.n_sub)
elif args.visual_dataset == 'clean_train':
clean_train_with_trans = result_attack["clean_train"]
visual_dataset = generate_clean_dataset(
clean_train_with_trans, selected_classes, max_num_samples=args.n_sub)
elif args.visual_dataset == 'clean_test':
clean_test_with_trans = result_attack["clean_test"]
visual_dataset = generate_clean_dataset(
clean_test_with_trans, selected_classes, max_num_samples=args.n_sub)
elif args.visual_dataset == 'bd_train':
bd_train_with_trans = result_attack["bd_train"]
visual_dataset = generate_bd_dataset(
bd_train_with_trans, args.target_class, selected_classes, max_num_samples=args.n_sub)
elif args.visual_dataset == 'bd_test':
bd_test_with_trans = result_attack["bd_test"]
visual_dataset = generate_bd_dataset(
bd_test_with_trans, args.target_class, selected_classes, max_num_samples=args.n_sub)
else:
assert False, "Illegal vis_class"
print(
f'Create visualization dataset with \n \t Dataset: {args.visual_dataset} \n \t Number of samples: {len(visual_dataset)} \n \t Selected classes: {selected_classes}')
# Create data loader
data_loader = torch.utils.data.DataLoader(
visual_dataset, batch_size=args.batch_size, num_workers=args.num_workers, shuffle=False
)
# Create denormalization function
for trans_t in data_loader.dataset.wrap_img_transform.transforms:
if isinstance(trans_t, transforms.Normalize):
denormalizer = get_dataset_denormalization(trans_t)
# Load model
model_visual = generate_cls_model(args.model, args.num_classes)
if args.result_file_defense != "None":
save_path_defense = "./record/" + args.result_file_defense
visual_save_path = save_path_defense + "/visual"
result_defense = load_attack_result(
save_path_defense + "/defense_result.pt")
defense_method = args.result_file_defense.split('/')[-1]
if defense_method == 'fp':
model_visual.layer4[1].conv2 = torch.nn.Conv2d(
512, 512 - result_defense['index'], (3, 3), stride=1, padding=1, bias=False)
model_visual.linear = torch.nn.Linear(
(512 - result_defense['index'])*1, args.num_classes)
if defense_method == 'dbd':
backbone = get_network_dbd(args)
model_visual = LinearModel(
backbone, backbone.feature_dim, args.num_classes)
model_visual.load_state_dict(result_defense["model"])
print(f"Load model {args.model} from {args.result_file_defense}")
else:
model_visual.load_state_dict(result_attack["model"])
print(f"Load model {args.model} from {args.result_file_attack}")
model_visual.to(args.device)
# !!! Important to set eval mode !!!
model_visual.eval()
# make visual_save_path if not exist
os.mkdir(visual_save_path) if not os.path.exists(visual_save_path) else None
############ Activation Image Distribution ################
print('Plotting Activation Image Distribution')
module_dict = dict(model_visual.named_modules())
module_names = module_dict.keys()
# Plot Conv2d or Linear
module_visual = [i for i in module_dict.keys() if isinstance(
module_dict[i], torch.nn.Conv2d) or isinstance(module_dict[i], torch.nn.Linear) or isinstance(module_dict[i], torch.nn.BatchNorm2d)]
poi_indicator = np.array(get_poison_indicator_from_bd_dataset(visual_dataset))
labels = np.array(get_true_label_from_bd_dataset(visual_dataset))
df = None
# decide the number of images to compute the distribution
num_image = int(len(visual_dataset)/len(selected_classes))
if poi_indicator.sum() > 0:
num_image = poi_indicator.sum()
# regard the poisoned images as a class with label args.num_classes
labels[poi_indicator==1] = args.num_classes
print(f'Visualize Top-{num_image} Samples from {len(visual_dataset)} Samples.')
label_set = np.unique(labels)
label_set.sort()
max_num_neuron = 0
for module_name in module_visual:
target_layer = module_dict[module_name]
print(f'Collecting features from module {target_layer}')
features, labels, poi_indicator = get_features(
args, model_visual, target_layer, data_loader, reduction='sum', activation= None)
# set the poisoned images as a class with label args.num_classes for each iteration.
# this can be skipped if shuffle is set to False.
labels[poi_indicator==1]=args.num_classes
total_neuron = features.shape[1]
max_num_neuron = np.max([max_num_neuron, total_neuron])
top_indx = np.argsort(-features, axis=0)[:num_image, :]
top_pred = np.array(labels)[top_indx]
for neuron_i in range(total_neuron):
base_row = {}
base_row['layer'] = module_name
base_row['Neuron'] = neuron_i
for i in range(len(label_set)):
base_row[f'percent_{i}'] = np.sum(
top_pred[:, neuron_i] == label_set[i])/num_image
if df is None:
df = pd.DataFrame.from_dict([base_row])
else:
df.loc[df.shape[0]] = base_row
df.to_csv(visual_save_path + f'/act_dist_{args.visual_dataset}.csv')
# define Matplotlib figure and axis
fig, ax = plt.subplots(figsize=(20, 50))
# create simple line plot
ax.plot([0, 0], [0, 0])
labels = np.array(get_true_label_from_bd_dataset(visual_dataset))
custom_palette = sns.color_palette("hls", np.unique(labels).shape[0])
if poi_indicator.sum() > 0:
custom_palette.append((0.0, 0.0, 0.0)) # Black for poison samples
start_x0 = 0
height = 1
width = 1
max_num_neuron = df.Neuron.max()
for module_name in module_visual:
print(f'ploting {module_name}')
y_0 = 0
layer_info = df[df.layer == module_name]
total_neuron = layer_info.shape[0]
for neuron_i in range(total_neuron):
x_0 = start_x0
base_row = layer_info.iloc[neuron_i]
for i in range(len(label_set)):
ax.add_patch(Rectangle((x_0, y_0), width*base_row[f'percent_{i}'], height,
facecolor=custom_palette[i],
fill=True,
lw=5,
alpha=0.8))
x_0 += width*base_row[f'percent_{i}']
y_0 += 1.5*height
start_x0 += 1.5*width
x_loc = [0.5*width+1.5*width*i for i in range(len(module_visual))]
y_loc = [0.5*height+1.5*height*i for i in range(max_num_neuron)]
ax.set_xlim(xmin=-0.5*width, xmax=1.5*width*(len(module_visual)+1))
ax.set_ylim(ymin=-0.5*height, ymax=1.5*height*(max_num_neuron+1))
ax.set_xticks(x_loc, module_visual, rotation=270)
ax.set_yticks(y_loc[::10], np.arange(max_num_neuron)[::10])
ax.set_title(f'Distribution of Top-{num_image} Images')
ax.set_ylabel('Neuron')
ax.set_xlabel('Layer')
classes = args.class_names
if poi_indicator.sum() > 0:
classes += ["poisoned"]
# map the label to class name in the order of colors/indexes
label_class = [classes[i].capitalize() for i in label_set]
legend_elements = [Patch(facecolor=custom_palette[i],
label=label_class[i]) for i in range(len(label_class))]
ax.legend(handles=legend_elements, loc='upper center', bbox_to_anchor=(
0.5, 1.02), ncol=len(label_class), fancybox=True, shadow=True)
plt.savefig(visual_save_path + f"/act_dist_{args.visual_dataset}.png")
print(f'Save to {visual_save_path + f"/act_dist_{args.visual_dataset}"}.png')