-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathDoubleWell_GenerateData.py
48 lines (39 loc) · 1.04 KB
/
DoubleWell_GenerateData.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import numpy as np
import matplotlib.pyplot as plt
class DoubleWell():
def __init__(self, beta, c):
self.beta = beta
self.c = c
def b(self, x):
return -x**3 + 2*x + self.c
def sigma(self, x):
return np.sqrt(2/self.beta)
class EulerMaruyama(object):
def __init__(self, h, nSteps):
self.h = h
self.nSteps = nSteps
def integrate(self, s, x):
y = np.zeros(self.nSteps)
y[0] = x
for i in range(1, self.nSteps):
y[i] = y[i-1] + s.b(y[i-1])*self.h + s.sigma(y[i-1])*np.sqrt(self.h)*np.random.randn()
return y
#%% create double-well system and integrator
s = DoubleWell(beta=2, c=-1)
em = EulerMaruyama(1e-3, 10000)
#%% generate one trajectory
x0 = 5*np.random.rand() - 2.5
y = em.integrate(s, x0)
plt.clf()
plt.plot(y)
#%% generate training data
m = 1000
X = 5*np.random.rand(m) - 2.5
Y = np.zeros(m)
for i in range(m):
y = em.integrate(s, x0)
Y[i] = y[-1]
plt.figure()
plt.hist(Y, 50)