-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsimple_cnn.py
98 lines (85 loc) · 4.07 KB
/
simple_cnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
"""
MAML module for MEVF model
This code is written by Binh X. Nguyen and Binh D. Nguyen
<link paper>
"""
import torch
import torch.nn as nn
import numpy as np
import pickle
import torch.nn.functional as F
class SimpleCNN(nn.Module):
def __init__(self, weight_path='simple_cnn.weights', eps_cnn=1e-5, momentum_cnn=0.05):
super(SimpleCNN, self).__init__()
# init and load pre-trained model
weights = self.load_weight(weight_path)
self.conv1 = self.init_conv(1, 64, weights['conv1'], weights['b1'])
self.conv1_bn = nn.BatchNorm2d(num_features=64, eps=eps_cnn, affine=True, momentum=momentum_cnn)
self.conv2 = self.init_conv(64, 64, weights['conv2'], weights['b2'])
self.conv2_bn = nn.BatchNorm2d(num_features=64, eps=eps_cnn, affine=True, momentum=momentum_cnn)
self.conv3 = self.init_conv(64, 64, weights['conv3'], weights['b3'])
self.conv3_bn = nn.BatchNorm2d(num_features=64, eps=eps_cnn, affine=True, momentum=momentum_cnn)
self.conv4 = self.init_conv(64, 64, weights['conv4'], weights['b4'])
self.conv4_bn = nn.BatchNorm2d(num_features=64, eps=eps_cnn, affine=True, momentum=momentum_cnn)
def load_weight(self, path):
return pickle.load(open(path, 'rb'))
def forward(self, X):
out = F.relu(self.conv1(X))
out = self.conv1_bn(out)
out = F.relu(self.conv2(out))
out = self.conv2_bn(out)
out = F.relu(self.conv3(out))
out = self.conv3_bn(out)
out = F.relu(self.conv4(out))
out = self.conv4_bn(out)
out = out.view(-1, 64, 36)
return torch.mean(out, 2)
def convert_to_torch_weight(self, weight):
return np.transpose(weight, [3, 2, 0, 1])
def init_conv(self, inp, out, weight, bias, convert=True):
conv = nn.Conv2d(inp, out, 3, 2, 1, bias=True)
if convert:
weight = self.convert_to_torch_weight(weight)
conv.weight.data = torch.Tensor(weight).float()
conv.bias.data = torch.Tensor(bias).float()
return conv
class SimpleCNN32(nn.Module):
def __init__(self, weight_path='simple_cnn.weights', eps_cnn=1e-5, momentum_cnn=0.05):
super(SimpleCNN32, self).__init__()
# init and load pre-trained model
weights = self.load_weight(weight_path)
self.conv1 = self.init_conv(3, 32, weights['conv1'], weights['b1'])
self.conv1_bn = nn.BatchNorm2d(num_features=32, eps=eps_cnn, affine=True, momentum=momentum_cnn)
self.conv2 = self.init_conv(32, 32, weights['conv2'], weights['b2'])
self.conv2_bn = nn.BatchNorm2d(num_features=32, eps=eps_cnn, affine=True, momentum=momentum_cnn)
self.conv3 = self.init_conv(32, 32, weights['conv3'], weights['b3'])
self.conv3_bn = nn.BatchNorm2d(num_features=32, eps=eps_cnn, affine=True, momentum=momentum_cnn)
self.conv4 = self.init_conv(32, 32, weights['conv4'], weights['b4'])
self.conv4_bn = nn.BatchNorm2d(num_features=32, eps=eps_cnn, affine=True, momentum=momentum_cnn)
def load_weight(self, path):
return pickle.load(open(path, 'rb'))
def forward(self, X):
out = F.relu(self.conv1(X))
out = self.conv1_bn(out)
out = F.relu(self.conv2(out))
out = self.conv2_bn(out)
out = F.relu(self.conv3(out))
out = self.conv3_bn(out)
out = F.relu(self.conv4(out))
out = self.conv4_bn(out)
out = out.view(-1, 32, 256)
return torch.mean(out, 2)
def convert_to_torch_weight(self, weight):
return np.transpose(weight, [3, 2, 0, 1])
def init_conv(self, inp, out, weight, bias, convert=True):
conv = nn.Conv2d(inp, out, 3, 2, 1, bias=True)
if convert:
weight = self.convert_to_torch_weight(weight)
conv.weight.data = torch.Tensor(weight).float()
conv.bias.data = torch.Tensor(bias).float()
return conv
if __name__ == '__main__':
simple_cnn = SimpleCNN(weight_path='simple_cnn.weights', eps_cnn=1e-5, momentum_cnn=0.05)
npo = np.random.random((3, 1, 84, 84))
x = torch.tensor(npo, dtype=torch.float32).float()
simple_cnn(x)