|
| 1 | +''' |
| 2 | + Author: OMKAR PATHAK |
| 3 | + Created at: 01st September 2017 |
| 4 | +
|
| 5 | + Implementing various Matrix operations such as matrix addition, subtraction, multiplication. |
| 6 | +''' |
| 7 | + |
| 8 | +class Matrix(object): |
| 9 | + ''' |
| 10 | + Matrix class for performing various transformations |
| 11 | +
|
| 12 | + Matrix operations can be performed on two matrices with any number of dimensions |
| 13 | + ''' |
| 14 | + |
| 15 | + def __init__(self, matrix_one = None, matrix_two=None): |
| 16 | + ''' |
| 17 | + :param matrix_one: matrix with nxn dimensions |
| 18 | + :param matrix_two: matrix with nxn dimensions |
| 19 | +
|
| 20 | + .. code-block:: python: |
| 21 | +
|
| 22 | + matrix_one = [[1, 2], [1, 3], [1, 4]] (a 3x2 matrix) |
| 23 | + ''' |
| 24 | + self.matrix_one = matrix_one |
| 25 | + self.matrix_two = matrix_two |
| 26 | + |
| 27 | + |
| 28 | + def add(self): |
| 29 | + ''' |
| 30 | + function for adding the two matrices |
| 31 | +
|
| 32 | + .. note:: |
| 33 | +
|
| 34 | + Matrix addition requires both the matrices to be of same size. |
| 35 | + That is both the matrices should be of nxn dimensional. |
| 36 | + ''' |
| 37 | + |
| 38 | + # check if both the matrices are of same shape |
| 39 | + if not (len(self.matrix_one) == len(self.matrix_two)) or not (len(self.matrix_one[0]) == len(self.matrix_two[0])): |
| 40 | + raise Exception('Both Matrices should be of same dimensions') |
| 41 | + |
| 42 | + added_matrix = [[0 for i in range(len(self.matrix_one))] for j in range(len(self.matrix_two))] |
| 43 | + |
| 44 | + # iterate through rows |
| 45 | + for row in range(len(self.matrix_one)): |
| 46 | + # iterate through columns |
| 47 | + for column in range(len(self.matrix_one[0])): |
| 48 | + added_matrix[row][column] = self.matrix_one[row][column] + self.matrix_two[row][column] |
| 49 | + |
| 50 | + return added_matrix |
| 51 | + |
| 52 | + def subtract(self): |
| 53 | + ''' |
| 54 | + function for subtracting the two matrices |
| 55 | +
|
| 56 | + .. note:: |
| 57 | +
|
| 58 | + Matrix subtraction requires both the matrices to be of same size. |
| 59 | + That is both the matrices should be of nxn dimensional. |
| 60 | + ''' |
| 61 | + |
| 62 | + # check if both the matrices are of same shape |
| 63 | + if not (len(self.matrix_one) == len(self.matrix_two)) or not (len(self.matrix_one[0]) == len(self.matrix_two[0])): |
| 64 | + raise Exception('Both Matrices should be of same dimensions') |
| 65 | + |
| 66 | + subtracted_matrix = [[0 for i in range(len(self.matrix_one))] for j in range(len(self.matrix_two))] |
| 67 | + |
| 68 | + # iterate through rows |
| 69 | + for row in range(len(self.matrix_one)): |
| 70 | + # iterate through columns |
| 71 | + for column in range(len(self.matrix_one[0])): |
| 72 | + subtracted_matrix[row][column] = self.matrix_one[row][column] - self.matrix_two[row][column] |
| 73 | + |
| 74 | + return subtracted_matrix |
| 75 | + |
| 76 | + |
| 77 | + def multiply(self): |
| 78 | + ''' |
| 79 | + function for multiplying the two matrices |
| 80 | +
|
| 81 | + .. note:: |
| 82 | +
|
| 83 | + Matrix multiplication can be carried out even on matrices with different dimensions. |
| 84 | + ''' |
| 85 | + |
| 86 | + multiplied_matrix = [[0 for i in range(len(self.matrix_two[0]))] for j in range(len(self.matrix_one))] |
| 87 | + |
| 88 | + # iterate through rows |
| 89 | + for row_one in range(len(self.matrix_one)): |
| 90 | + # iterate through columns matrix_two |
| 91 | + for column in range(len(self.matrix_two[0])): |
| 92 | + # iterate through rows of matrix_two |
| 93 | + for row_two in range(len(self.matrix_two)): |
| 94 | + multiplied_matrix[row_one][column] += self.matrix_one[row_one][row_two] * self.matrix_two[row_two][column] |
| 95 | + |
| 96 | + return multiplied_matrix |
| 97 | + |
| 98 | + |
| 99 | + def transpose(self): |
| 100 | + ''' |
| 101 | + The transpose of a matrix is a new matrix whose rows are the columns of the original. |
| 102 | + (This makes the columns of the new matrix the rows of the original) |
| 103 | + ''' |
| 104 | + transpose_matrix = [[0 for i in range(len(self.matrix_one))] for j in range(len(self.matrix_one[0]))] |
| 105 | + |
| 106 | + # iterate through rows |
| 107 | + for row in range(len(self.matrix_one)): |
| 108 | + # iterate through columns |
| 109 | + for column in range(len(self.matrix_one[0])): |
| 110 | + transpose_matrix[column][row] = self.matrix_one[row][column] |
| 111 | + |
| 112 | + return transpose_matrix |
| 113 | + |
| 114 | + |
| 115 | + def rotate(self): |
| 116 | + ''' |
| 117 | + Given a matrix, clockwise rotate elements in it. |
| 118 | +
|
| 119 | + .. code-block:: python: |
| 120 | +
|
| 121 | + **Examples:** |
| 122 | +
|
| 123 | + Input |
| 124 | + 1 2 3 |
| 125 | + 4 5 6 |
| 126 | + 7 8 9 |
| 127 | +
|
| 128 | + Output: |
| 129 | + 4 1 2 |
| 130 | + 7 5 3 |
| 131 | + 8 9 6 |
| 132 | +
|
| 133 | + For detailed information visit: https://github.com/keon/algorithms/blob/master/matrix/matrix_rotation.txt |
| 134 | + ''' |
| 135 | + |
| 136 | + top = 0 |
| 137 | + bottom = len(self.matrix_one) - 1 |
| 138 | + left = 0 |
| 139 | + right = len(self.matrix_one[0]) - 1 |
| 140 | + |
| 141 | + while left < right and top < bottom: |
| 142 | + # Store the first element of next row, this element will replace first element of |
| 143 | + # current row |
| 144 | + prev = self.matrix_one[top + 1][left] |
| 145 | + |
| 146 | + # Move elements of top row one step right |
| 147 | + for i in range(left, right + 1): |
| 148 | + curr = self.matrix_one[top][i] |
| 149 | + self.matrix_one[top][i] = prev |
| 150 | + prev = curr |
| 151 | + |
| 152 | + top += 1 |
| 153 | + |
| 154 | + # Move elements of rightmost column one step downwards |
| 155 | + for i in range(top, bottom+1): |
| 156 | + curr = self.matrix_one[i][right] |
| 157 | + self.matrix_one[i][right] = prev |
| 158 | + prev = curr |
| 159 | + |
| 160 | + right -= 1 |
| 161 | + |
| 162 | + # Move elements of bottom row one step left |
| 163 | + for i in range(right, left-1, -1): |
| 164 | + curr = self.matrix_one[bottom][i] |
| 165 | + self.matrix_one[bottom][i] = prev |
| 166 | + prev = curr |
| 167 | + |
| 168 | + bottom -= 1 |
| 169 | + |
| 170 | + # Move elements of leftmost column one step upwards |
| 171 | + for i in range(bottom, top-1, -1): |
| 172 | + curr = self.matrix_one[i][left] |
| 173 | + self.matrix_one[i][left] = prev |
| 174 | + prev = curr |
| 175 | + |
| 176 | + left += 1 |
| 177 | + |
| 178 | + return self.matrix_one |
| 179 | + |
| 180 | + |
| 181 | + def count_unique_paths(self, m, n): |
| 182 | + ''' |
| 183 | + Count the number of unique paths from a[0][0] to a[m-1][n-1] |
| 184 | + We are allowed to move either right or down from a cell in the matrix. |
| 185 | + Approaches- |
| 186 | + (i) Recursion - Recurse starting from a[m-1][n-1], upwards and leftwards, |
| 187 | + add the path count of both recursions and return count. |
| 188 | + (ii) Dynamic Programming- Start from a[0][0].Store the count in a count |
| 189 | + matrix. Return count[m-1][n-1] |
| 190 | + Time Complexity = O(mn), Space Complexity = O(mn) |
| 191 | +
|
| 192 | + :param m: number of rows |
| 193 | + :param n: number of columns |
| 194 | + ''' |
| 195 | + if m < 1 or n < 1: |
| 196 | + return |
| 197 | + |
| 198 | + count = [[None for j in range(n)] for i in range(m)] |
| 199 | + |
| 200 | + # Taking care of the edge cases- matrix of size 1xn or mx1 |
| 201 | + for i in range(n): |
| 202 | + count[0][i] = 1 |
| 203 | + for j in range(m): |
| 204 | + count[j][0] = 1 |
| 205 | + |
| 206 | + for i in range(1, m): |
| 207 | + for j in range(1, n): |
| 208 | + count[i][j] = count[i-1][j] + count[i][j-1] |
| 209 | + |
| 210 | + return count[m-1][n-1] |
0 commit comments