forked from qiskit-community/ml-qem
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmlp.py
319 lines (247 loc) · 17 KB
/
mlp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
import qiskit.circuit.random
import torch, random
from torch.utils.data import Dataset, DataLoader, TensorDataset
from torch.optim.lr_scheduler import ReduceLROnPlateau
import torch.nn as nn
import numpy as np
import json, os, pickle
from tqdm import tqdm
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from qiskit import QuantumCircuit
class MLP1(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
super(MLP1, self).__init__()
self.fc1 = nn.Linear(input_size, hidden_size)
self.relu = nn.ReLU()
self.fc2 = nn.Linear(hidden_size, output_size)
def forward(self, x):
x = self.fc1(x)
x = self.relu(x)
x = self.fc2(x)
return x
class MLP2(nn.Module):
def __init__(self, input_size, hidden_size, output_size, dropout_rate=0.5):
super(MLP2, self).__init__()
self.fc1 = nn.Linear(input_size, hidden_size)
self.bn1 = nn.BatchNorm1d(hidden_size)
self.relu1 = nn.ReLU()
self.dropout1 = nn.Dropout(dropout_rate)
self.fc2 = nn.Linear(hidden_size, hidden_size)
self.bn2 = nn.BatchNorm1d(hidden_size)
self.relu2 = nn.ReLU()
self.dropout2 = nn.Dropout(dropout_rate)
self.fc3 = nn.Linear(hidden_size, output_size)
def forward(self, x):
# First layer
x1 = self.fc1(x)
x1 = self.bn1(x1)
x1 = self.relu1(x1)
x1 = self.dropout1(x1)
# Second layer
x2 = self.fc2(x1)
x2 = self.bn2(x2)
x2 = self.relu2(x2)
x2 = self.dropout2(x2)
# Skip connection
x3 = x1 + x2
# Output layer
x_out = self.fc3(x3)
return x_out
class MLP3(nn.Module):
def __init__(self, input_size, hidden_size, output_size, dropout_rate=0.3):
super(MLP3, self).__init__()
self.fc1 = nn.Linear(input_size, hidden_size)
self.bn1 = nn.BatchNorm1d(hidden_size)
self.relu1 = nn.ReLU()
self.dropout1 = nn.Dropout(dropout_rate)
self.fc2 = nn.Linear(hidden_size, hidden_size)
self.bn2 = nn.BatchNorm1d(hidden_size)
self.relu2 = nn.ReLU()
self.dropout2 = nn.Dropout(dropout_rate)
self.fc3 = nn.Linear(hidden_size, hidden_size//3)
self.relu3 = nn.ReLU()
self.dropout3 = nn.Dropout(dropout_rate)
self.fc4 = nn.Linear(hidden_size//3, output_size)
def forward(self, x):
# First layer
x1 = self.fc1(x)
x1 = self.bn1(x1)
x1 = self.relu1(x1)
x1 = self.dropout1(x1)
# Second layer
x2 = self.fc2(x1)
x2 = self.bn2(x2)
x2 = self.relu2(x2)
x2 = self.dropout2(x2)
# Skip connection
x3 = x1 + x2
# Output layer
x4 = self.fc3(x3)
x4 = self.relu3(x4)
x4 = self.dropout3(x4)
x_out = self.fc4(x4)
return x_out
def fix_random_seed(seed=0):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed) # if you are using multi-GPU.
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
print(f'random seed fixed to {seed}')
def count_gates_by_rotation_angle(circuit, bin_size):
angles = []
for instr, qargs, cargs in circuit.data:
if instr.name in ['rx', 'ry', 'rz'] and len(qargs) == 1:
angles += [float(instr.params[0])]
bin_edges = np.arange(-2 * np.pi, 2 * np.pi + bin_size, bin_size)
counts, _ = np.histogram(angles, bins=bin_edges)
bin_labels = [f"{left:.2f} to {right:.2f}" for left, right in zip(bin_edges[:-1], bin_edges[1:])]
angle_bins = {label: count for label, count in zip(bin_labels, counts)}
return list(angle_bins.values())
def recursive_dict_loop(my_dict, parent_key=None, out=None, target_key1=None, target_key2=None):
if out is None: out = []
for key, val in my_dict.items():
if isinstance(val, dict):
recursive_dict_loop(val, key, out, target_key1, target_key2)
else:
if parent_key and target_key1 in str(parent_key) and key == target_key2:
out += [val]
return out or 0.
def encode_data_v2_ecr(circuits, ideal_exp_vals, noisy_exp_vals, obs_size, meas_bases=None, two_q_gate='ecr'):
if isinstance(noisy_exp_vals[0], list) and len(noisy_exp_vals[0]) == 1:
noisy_exp_vals = [x[0] for x in noisy_exp_vals]
if meas_bases is None:
meas_bases = [[]]
gates_set = [two_q_gate] + ['sx', 'x', 'id', 'rz']
vec = []
bin_size = 0.025 * np.pi
num_angle_bins = int(np.ceil(4 * np.pi / bin_size))
X = torch.zeros([len(circuits), len(vec) + len(gates_set) + num_angle_bins + obs_size + len(meas_bases[0])])
vec_slice = slice(0, len(vec))
gate_counts_slice = slice(len(vec), len(vec)+len(gates_set))
angle_bins_slice = slice(len(vec)+len(gates_set), len(vec)+len(gates_set)+num_angle_bins)
exp_val_slice = slice(len(vec)+len(gates_set)+num_angle_bins, len(vec)+len(gates_set)+num_angle_bins+obs_size)
meas_basis_slice = slice(len(vec)+len(gates_set)+num_angle_bins+obs_size, len(X[0]))
# X[:, vec_slice] = vec[None, :]
for i, circ in enumerate(circuits):
gate_counts_all = circ.count_ops()
X[i, gate_counts_slice] = torch.tensor(
[gate_counts_all.get(key, 0) for key in gates_set]
) * 0.01 # put it in the same order of magnitude as the expectation values
for i, circ in enumerate(circuits):
gate_counts = count_gates_by_rotation_angle(circ, bin_size)
X[i, angle_bins_slice] = torch.tensor(gate_counts) * 0.01 # put it in the same order of magnitude as the expectation values
if obs_size > 1: assert len(noisy_exp_vals[i]) == obs_size
elif obs_size == 1: assert isinstance(noisy_exp_vals[i], float)
X[i, exp_val_slice] = torch.tensor(noisy_exp_vals[i])
if meas_bases != [[]]:
assert len(meas_bases) == len(circuits)
for i, basis in enumerate(meas_bases):
X[i, meas_basis_slice] = torch.tensor(basis)
y = torch.tensor(ideal_exp_vals, dtype=torch.float32)
return X, y
def encode_data(circuits, properties, ideal_exp_vals, noisy_exp_vals, num_qubits, meas_bases=None):
if isinstance(noisy_exp_vals[0], list) and len(noisy_exp_vals[0]) == 1:
noisy_exp_vals = [x[0] for x in noisy_exp_vals]
gates_set = sorted(properties['gates_set']) # must sort!
if meas_bases is None:
meas_bases = [[]]
vec = [np.mean(recursive_dict_loop(properties, out=[], target_key1='cx', target_key2='gate_error'))]
vec += [np.mean(recursive_dict_loop(properties, out=[], target_key1='id', target_key2='gate_error'))]
vec += [np.mean(recursive_dict_loop(properties, out=[], target_key1='sx', target_key2='gate_error'))]
vec += [np.mean(recursive_dict_loop(properties, out=[], target_key1='x', target_key2='gate_error'))]
vec += [np.mean(recursive_dict_loop(properties, out=[], target_key1='rz', target_key2='gate_error'))]
vec += [np.mean(recursive_dict_loop(properties, out=[], target_key1='', target_key2='readout_error'))]
vec += [np.mean(recursive_dict_loop(properties, out=[], target_key1='', target_key2='t1'))]
vec += [np.mean(recursive_dict_loop(properties, out=[], target_key1='', target_key2='t2'))]
vec = torch.tensor(vec) * 100 # put it in the same order of magnitude as the expectation values
bin_size = 0.1 * np.pi
num_angle_bins = int(np.ceil(4 * np.pi / bin_size))
X = torch.zeros([len(circuits), len(vec) + len(gates_set) + num_angle_bins + num_qubits + len(meas_bases[0])])
vec_slice = slice(0, len(vec))
gate_counts_slice = slice(len(vec), len(vec)+len(gates_set))
angle_bins_slice = slice(len(vec)+len(gates_set), len(vec)+len(gates_set)+num_angle_bins)
exp_val_slice = slice(len(vec)+len(gates_set)+num_angle_bins, len(vec)+len(gates_set)+num_angle_bins+num_qubits)
meas_basis_slice = slice(len(vec)+len(gates_set)+num_angle_bins+num_qubits, len(X[0]))
X[:, vec_slice] = vec[None, :]
for i, circ in enumerate(circuits):
gate_counts_all = circ.count_ops()
X[i, gate_counts_slice] = torch.tensor(
[gate_counts_all.get(key, 0) for key in gates_set]
) * 0.01 # put it in the same order of magnitude as the expectation values
for i, circ in enumerate(circuits):
gate_counts = count_gates_by_rotation_angle(circ, bin_size)
X[i, angle_bins_slice] = torch.tensor(gate_counts) * 0.01 # put it in the same order of magnitude as the expectation values
if num_qubits > 1: assert len(noisy_exp_vals[i]) == num_qubits
elif num_qubits == 1: assert isinstance(noisy_exp_vals[i], float)
X[i, exp_val_slice] = torch.tensor(noisy_exp_vals[i])
if meas_bases != [[]]:
assert len(meas_bases) == len(circuits)
for i, basis in enumerate(meas_bases):
X[i, meas_basis_slice] = torch.tensor(basis)
y = torch.tensor(ideal_exp_vals, dtype=torch.float32)
return X, y
# def encode_data_old(circuits, properties, ideal_exp_vals, noisy_exp_vals, num_qubits):
# gates_set = sorted(properties['gates_set']) # must sort!
#
# vec = [np.mean(recursive_dict_loop(properties, out=[], target_key1='cx', target_key2='gate_error'))]
# vec += [np.mean(recursive_dict_loop(properties, out=[], target_key1='id', target_key2='gate_error'))]
# vec += [np.mean(recursive_dict_loop(properties, out=[], target_key1='sx', target_key2='gate_error'))]
# vec += [np.mean(recursive_dict_loop(properties, out=[], target_key1='x', target_key2='gate_error'))]
# vec += [np.mean(recursive_dict_loop(properties, out=[], target_key1='rz', target_key2='gate_error'))]
# vec += [np.mean(recursive_dict_loop(properties, out=[], target_key1='', target_key2='readout_error'))]
# vec += [np.mean(recursive_dict_loop(properties, out=[], target_key1='', target_key2='t1'))]
# vec += [np.mean(recursive_dict_loop(properties, out=[], target_key1='', target_key2='t2'))]
# vec = torch.tensor(vec) * 100 # put it in the same order of magnitude as the expectation values
# bin_size = 0.1 * np.pi
# num_angle_bins = int(np.ceil(4 * np.pi / bin_size))
#
# X = torch.zeros([len(circuits), len(vec) + len(gates_set) + num_angle_bins + num_qubits])
#
# X[:, :len(vec)] = vec[None, :]
#
# for i, circ in enumerate(circuits):
# gate_counts_all = circ.count_ops()
# X[i, len(vec):len(vec) + len(gates_set)] = torch.tensor(
# [gate_counts_all.get(key, 0) for key in gates_set]
# ) * 0.01 # put it in the same order of magnitude as the expectation values
#
# for i, circ in enumerate(circuits):
# gate_counts = count_gates_by_rotation_angle(circ, bin_size)
# X[i, len(vec) + len(gates_set): -num_qubits] = torch.tensor(gate_counts) * 0.01 # put it in the same order of magnitude as the expectation values
#
# if num_qubits > 1: assert len(noisy_exp_vals[i]) == num_qubits
# elif num_qubits == 1: assert isinstance(noisy_exp_vals[i], float)
#
# X[i, -num_qubits:] = torch.tensor(noisy_exp_vals[i])
#
# y = torch.tensor(ideal_exp_vals, dtype=torch.float32)
#
# return X, y
if __name__ == '__main__':
from qiskit.providers.fake_provider import FakeMontreal, FakeLima
from blackwater.data.utils import get_backend_properties_v1
from qiskit.quantum_info import SparsePauliOp
from blackwater.data.utils import encode_pauli_sum_op
backend = FakeLima()
print(list({g.gate for g in backend.properties().gates}))
properties = get_backend_properties_v1(backend)
circuit_qasm = 'OPENQASM 2.0;\ninclude "qelib1.inc";\nqreg q[5];\ncreg meas[4];\nrz(pi/2) q[1];\nsx q[1];\nrz(-pi/2) q[1];\ncx q[2],q[1];\nsx q[1];\nrz(1.7278759594743862) q[1];\nsx q[1];\nrz(-3.3042128505379065) q[1];\nsx q[2];\nrz(2.9845130209103035) q[2];\nsx q[2];\nrz(-0.9186429592174754) q[2];\nrz(-pi/4) q[3];\nsx q[3];\nrz(-pi/2) q[3];\nx q[4];\ncx q[4],q[3];\nrz(1.3504439735577742) q[3];\nsx q[3];\nrz(-2.343957397662077) q[3];\nsx q[3];\nrz(-1.4156195211105356) q[3];\ncx q[1],q[3];\nsx q[1];\nrz(-1.725836788316796) q[1];\nsx q[1];\nrz(-3.1162625188573028) q[1];\ncx q[2],q[1];\nsx q[1];\nrz(1.7278759594743862) q[1];\nsx q[1];\nrz(-3.3042128505379065) q[1];\nsx q[2];\nrz(2.9845130209103035) q[2];\nsx q[2];\nrz(-0.9186429592174754) q[2];\nrz(1.906049550783556) q[3];\nsx q[3];\nrz(-0.4486568037754637) q[3];\nsx q[3];\nrz(-1.201830429096015) q[3];\nsx q[4];\nrz(pi/20) q[4];\nsx q[4];\nrz(2.0916100803511672) q[4];\ncx q[4],q[3];\nrz(-1.3504439735577738) q[3];\nsx q[3];\nrz(-0.7976352559277142) q[3];\nsx q[3];\nrz(1.7259731324792575) q[3];\ncx q[1],q[3];\nsx q[1];\nrz(-1.725836788316796) q[1];\nsx q[1];\nrz(-3.1162625188573028) q[1];\ncx q[2],q[1];\nsx q[1];\nrz(1.7278759594743862) q[1];\nsx q[1];\nrz(-3.3042128505379065) q[1];\nsx q[2];\nrz(2.9845130209103035) q[2];\nsx q[2];\nrz(-0.9186429592174754) q[2];\nrz(1.906049550783556) q[3];\nsx q[3];\nrz(-0.4486568037754637) q[3];\nsx q[3];\nrz(-1.201830429096015) q[3];\nsx q[4];\nrz(-2.9845130209103035) q[4];\nsx q[4];\nrz(2.0916100803511655) q[4];\ncx q[4],q[3];\nrz(-1.3504439735577738) q[3];\nsx q[3];\nrz(-0.7976352559277142) q[3];\nsx q[3];\nrz(1.7259731324792575) q[3];\ncx q[1],q[3];\nsx q[1];\nrz(-1.725836788316796) q[1];\nsx q[1];\nrz(-3.1162625188573028) q[1];\ncx q[2],q[1];\nsx q[1];\nrz(1.7278759594743862) q[1];\nsx q[1];\nrz(-3.3042128505379065) q[1];\nsx q[2];\nrz(2.9845130209103035) q[2];\nsx q[2];\nrz(-0.9186429592174754) q[2];\nrz(1.906049550783556) q[3];\nsx q[3];\nrz(-0.4486568037754637) q[3];\nsx q[3];\nrz(-1.201830429096015) q[3];\nsx q[4];\nrz(-2.9845130209103035) q[4];\nsx q[4];\nrz(2.0916100803511655) q[4];\ncx q[4],q[3];\nrz(-1.3504439735577738) q[3];\nsx q[3];\nrz(-0.7976352559277142) q[3];\nsx q[3];\nrz(1.7259731324792575) q[3];\ncx q[1],q[3];\nsx q[1];\nrz(-1.725836788316796) q[1];\nsx q[1];\nrz(-3.1162625188573028) q[1];\ncx q[2],q[1];\nsx q[1];\nrz(1.7278759594743862) q[1];\nsx q[1];\nrz(-3.3042128505379065) q[1];\nsx q[2];\nrz(2.9845130209103035) q[2];\nsx q[2];\nrz(-0.9186429592174754) q[2];\nrz(1.906049550783556) q[3];\nsx q[3];\nrz(-0.4486568037754637) q[3];\nsx q[3];\nrz(-1.201830429096015) q[3];\nsx q[4];\nrz(-2.9845130209103035) q[4];\nsx q[4];\nrz(2.0916100803511655) q[4];\ncx q[4],q[3];\nrz(-1.3504439735577738) q[3];\nsx q[3];\nrz(-0.7976352559277142) q[3];\nsx q[3];\nrz(1.7259731324792575) q[3];\ncx q[1],q[3];\nsx q[1];\nrz(-1.725836788316796) q[1];\nsx q[1];\nrz(-3.1162625188573028) q[1];\ncx q[2],q[1];\nsx q[1];\nrz(1.7278759594743862) q[1];\nsx q[1];\nrz(-3.3042128505379065) q[1];\nsx q[2];\nrz(2.9845130209103035) q[2];\nsx q[2];\nrz(-0.9186429592174754) q[2];\nrz(1.906049550783556) q[3];\nsx q[3];\nrz(-0.4486568037754637) q[3];\nsx q[3];\nrz(-1.201830429096015) q[3];\nsx q[4];\nrz(-2.9845130209103035) q[4];\nsx q[4];\nrz(2.0916100803511655) q[4];\ncx q[4],q[3];\nrz(-1.3504439735577738) q[3];\nsx q[3];\nrz(-0.7976352559277142) q[3];\nsx q[3];\nrz(1.7259731324792575) q[3];\ncx q[1],q[3];\nsx q[1];\nrz(-1.725836788316796) q[1];\nsx q[1];\nrz(-3.1162625188573028) q[1];\ncx q[2],q[1];\nsx q[1];\nrz(1.7278759594743862) q[1];\nsx q[1];\nrz(-3.3042128505379065) q[1];\nsx q[2];\nrz(2.9845130209103035) q[2];\nsx q[2];\nrz(-0.9186429592174754) q[2];\nrz(1.906049550783556) q[3];\nsx q[3];\nrz(-0.4486568037754637) q[3];\nsx q[3];\nrz(-1.201830429096015) q[3];\nsx q[4];\nrz(-2.9845130209103035) q[4];\nsx q[4];\nrz(1.036297431763694) q[4];\ncx q[4],q[3];\nrz(-1.3504439735577738) q[3];\nsx q[3];\nrz(-0.7976352559277142) q[3];\nsx q[3];\nrz(1.7259731324792575) q[3];\ncx q[1],q[3];\nsx q[1];\nrz(-1.725836788316796) q[1];\nsx q[1];\nrz(-3.1162625188573028) q[1];\ncx q[2],q[1];\nsx q[1];\nrz(1.7278759594743862) q[1];\nsx q[1];\nrz(-pi) q[1];\nsx q[2];\nrz(2.9845130209103035) q[2];\nsx q[2];\nrz(-0.9186429592174754) q[2];\nsx q[3];\nrz(1.7278759594743862) q[3];\nsx q[3];\nrz(-4.349014256811735) q[3];\nsx q[4];\nrz(-1.4928778811476757) q[4];\nsx q[4];\nrz(-0.13653026392406042) q[4];\ncx q[3],q[4];\nsx q[3];\nrz(1.7278759594743862) q[3];\nsx q[3];\ncx q[1],q[3];\nsx q[1];\nrz(2.9845130209103035) q[1];\nsx q[1];\nrz(-0.16065255166893166) q[1];\nsx q[3];\nrz(1.7278759594743862) q[3];\nsx q[3];\nrz(-1.2074216032219418) q[3];\nsx q[4];\nrz(1.7278759594743862) q[4];\nsx q[4];\nrz(-2.091610080351167) q[4];\nbarrier q[2],q[1],q[3],q[4];\nmeasure q[2] -> meas[0];\nmeasure q[1] -> meas[1];\nmeasure q[3] -> meas[2];\nmeasure q[4] -> meas[3];\n'
circuits = [QuantumCircuit.from_qasm_str(circuit_qasm)]
# circuits = [qiskit.circuit.random.random_circuit(4, 10, 2, measure=True, seed=0)]
ideal_exp_vals = [1, -1, 1, -1]
noisy_exp_vals = [[0.9, -0.92, 0.89, -0.94]]
for _ in range(1):
# X1, y1 = encode_data_old(circuits, properties, ideal_exp_vals, noisy_exp_vals, 4)
# print(X1[0, :])
meas_bases = encode_pauli_sum_op(SparsePauliOp('XYZI'))
print(meas_bases)
X2, y2 = encode_data(circuits, properties, ideal_exp_vals, noisy_exp_vals, 4, meas_bases=meas_bases)
print(X2[0, :])
# assert (X1 == X2).all()
# assert (y1 == y2).all()