-
Notifications
You must be signed in to change notification settings - Fork 1.2k
/
utils.py
44 lines (35 loc) · 1.35 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import torch
from transformers import AutoModelForCausalLM
from accelerate import dispatch_model
def _device_map(num_gpus, num_layers):
per_gpu_layers = (num_layers + 2) / num_gpus
device_map = {
'transformer.wte': 0,
'transformer.ln_f': 0,
'lm_head': num_gpus-1
}
used = 1
gpu_target = 0
for i in range(num_layers):
if used >= per_gpu_layers:
gpu_target += 1
used = 0 if gpu_target < num_gpus-1 else 1
assert gpu_target < num_gpus
device_map[f'transformer.h.{i}'] = gpu_target
used += 1
return device_map
def load_model_on_gpus(model_name_or_path, num_gpus: int = 2):
num_devices = torch.cuda.device_count()
if num_gpus == 1:
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, device_map='auto',
trust_remote_code=True).eval()
elif 1 < num_gpus <= num_devices:
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, device_map='cpu',
trust_remote_code=True).eval()
num_layers = model.config.num_hidden_layers
device_map = _device_map(num_gpus, num_layers)
print(device_map)
model = dispatch_model(model, device_map=device_map)
else:
raise KeyError
return model