-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathupdatealphas_Exp_MH.cpp
183 lines (166 loc) · 5.39 KB
/
updatealphas_Exp_MH.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
#include <Rcpp.h>
extern "C" double digamma(double);
// [[register]]
RcppExport SEXP updatealphas_Exp_MH(SEXP alphast, SEXP n_s, SEXP K, SEXP I,
SEXP lambda_s, SEXP gammat, SEXP var_1,
SEXP var_2, SEXP p_var) {
BEGIN_RCPP
Rcpp::NumericVector xalphast(alphast);
Rcpp::IntegerMatrix xn_s(n_s);
Rcpp::IntegerMatrix xgammat(gammat);
int xI = Rcpp::as<int>(I);
int xK = Rcpp::as<int>(K);
Rcpp::NumericVector sqrt_var1(var_1);
Rcpp::NumericVector sqrt_var2(var_2);
// int xtt = Rcpp::as<int>(ttt);
Rcpp::NumericVector xlambda_s(lambda_s);
Rcpp::IntegerVector xAalphas(xK);
Rcpp::RNGScope scope;
Rcpp::NumericVector xp_var(p_var); // proposal mixture
// double delF = 0.0;
double psik = 0.;
double log1 = 0.0;
double log2 = 0.0;
double sums = 0.;
double sum_alp_ns = 0.0;
double sum_alp = 0.0;
double sum_gl_alp = 0.0;
double sum_gl_alp_ns = 0.0;
int flag1 = 0;
int flagkk = 0;
int lp1 = 0;
for (int kk = 0; kk < xK; kk++) {
// delF = 0.0;
psik = digamma(xalphast[kk]);
log1 = 0.0;
log2 = 0.0;
for (int i = 0; i < xI; i++) {
lp1 = 0;
for (int k = 0; k < xK; k++) {
if (xgammat(i, k) == 1) {
lp1 += 1;
}
}
std::vector<int> p1(lp1);
flag1 = 0;
flagkk = 0;
for (int k = 0; k < xK; k++) {
if (xgammat(i, k) == 1) {
p1[flag1] = k;
flag1 += 1;
if (k == kk) {
flagkk = 1;
}
}
}
sum_alp_ns = 0.0;
sum_alp = 0.0;
sum_gl_alp = 0.0;
sum_gl_alp_ns = 0.0;
for (int k = 0; k < lp1; k++) {
sums = xalphast[p1[k]] + xn_s(i, p1[k]);
sum_alp_ns += sums;
sum_alp += xalphast[p1[k]];
sum_gl_alp += lgamma(xalphast[p1[k]]);
sum_gl_alp_ns += lgamma(sums);
}
// if (flagkk > 0) {
// delF += digamma(xn_s(i, kk) + xalphast[kk]) - psik -
// digamma(sum_alp_ns) + digamma(sum_alp);
//}
if (lp1 > 0) {
log2 += -(sum_gl_alp - lgamma(sum_alp)) +
(sum_gl_alp_ns - lgamma(sum_alp_ns));
}
}
// double mean_p = std::max(0.01, xalphast[kk] + delF / xtt);
Rcpp::NumericVector alpha_s_p = Rcpp::rnorm(1, xalphast[kk], sqrt_var1[kk]);
if (Rcpp::as<double>(Rcpp::rbinom(1, 1, xp_var[kk])) == 1) {
alpha_s_p = Rcpp::rnorm(1, xalphast[kk], sqrt_var1[kk]);
} else {
alpha_s_p = Rcpp::rnorm(1, xalphast[kk], sqrt_var2[kk]);
}
if (alpha_s_p[0] > 0.0) {
std::vector<double> alp(xK);
for (int i = 0; i < xK; i++) {
alp[i] = xalphast[i];
}
alp[kk] = alpha_s_p[0];
// log2 += log(xp_var[kk]*gsl_ran_gaussian_pdf(alp[kk]-mean_p,
// sqrt_var1[kk])+(1-xp_var[kk])*gsl_ran_gaussian_pdf(alp[kk]-mean_p,
// sqrt_var2[kk]));
log2 +=
log(xp_var[kk] * Rf_dnorm4(alp[kk], xalphast[kk], sqrt_var1[kk], 0) +
(1 - xp_var[kk]) *
Rf_dnorm4(alp[kk], xalphast[kk], sqrt_var2[kk], 0));
// delF = 0.0;
psik = digamma(alp[kk]);
for (int i = 0; i < xI; i++) {
lp1 = 0;
for (int k = 0; k < xK; k++) {
if (xgammat(i, k) == 1) {
lp1 += 1;
}
}
std::vector<int> p1(lp1);
flag1 = 0;
flagkk = 0;
for (int k = 0; k < xK; k++) {
if (xgammat(i, k) == 1) {
p1[flag1] = k;
flag1 += 1;
if (k == kk) {
flagkk = 1;
}
}
}
sum_alp_ns = 0.0;
sum_alp = 0.0;
sum_gl_alp = 0.0;
sum_gl_alp_ns = 0.0;
for (int k = 0; k < lp1; k++) {
sums = alp[p1[k]] + xn_s(i, p1[k]);
sum_alp_ns += sums;
sum_alp += alp[p1[k]];
sum_gl_alp += lgamma(alp[p1[k]]);
sum_gl_alp_ns += lgamma(sums);
}
// if (flagkk > 0) {
// delF += digamma(xn_s(i, kk) + xalphast[kk]) - psik -
// digamma(sum_alp_ns) + digamma(sum_alp);
// }
if (lp1 > 0) {
log1 += -(sum_gl_alp - lgamma(sum_alp)) +
(sum_gl_alp_ns - lgamma(sum_alp_ns));
}
}
// mean_p = std::max(0.01, alp[kk] + delF / xtt);
// log1 +=log(xp_var[kk]*gsl_ran_gaussian_pdf(xalphast[kk]-mean_p,
// sqrt_var1[kk])+(1-xp_var[kk])*gsl_ran_gaussian_pdf(xalphast[kk]-mean_p,
// sqrt_var2[kk]));
log1 +=
log(xp_var[kk] * Rf_dnorm4(xalphast[kk], alp[kk], sqrt_var1[kk], 0) +
(1 - xp_var[kk]) *
Rf_dnorm4(xalphast[kk], alp[kk], sqrt_var2[kk], 0));
// log1 += log(gsl_ran_exponential_pdf(alp[kk],xlambda_s[kk]));
// //exponential prior
log1 += Rf_dexp(alp[kk], xlambda_s[kk], 1);
// log2 +=
// log(gsl_ran_exponential_pdf(xalphast[kk],xlambda_s[kk]));//exponential
// prior
log2 += Rf_dexp(xalphast[kk], xlambda_s[kk], 1);
// if (alp[kk]<0 || alp[kk]>xlambda_s[kk]) {log1+=log(0);} //Uniform prior
// if (xalphast[kk]<0 || xalphast[kk]>xlambda_s[kk]) {log2+=log(0);}
// //Uniform prior
if (log(Rcpp::as<double>(Rcpp::runif(1))) <= (log1 - log2)) {
xalphast[kk] = alp[kk];
xAalphas[kk] = 1;
} else {
xAalphas[kk] = 0;
}
}
}
return Rcpp::List::create(Rcpp::Named("alphas_tt") = xalphast,
Rcpp::Named("Aalphas") = xAalphas);
END_RCPP
}