Model | Pretraining Data | Model | Paper Reference |
---|---|---|---|
MR-HuBERT Base (~97M) | Librispeech 960 hr | download | mono_base |
MR-HuBERT Base (~321M) | Libri-Light 60k hr | download | mono_large |
Multilingual MR-HuBERT Base (~97M) | Voxpopuli 100k hr | download | multi_base |
Multilingual MR-HuBERT Large (~321M) | Voxpopuli 100k hr | download 400k steps or download 600k steps | Not in the paper |
Model | Pretraining Data | Model | Paper Reference |
---|---|---|---|
MR-HuBERT Base (2-4-6 lyrs) | Librispeech 960 hr | download | (B.1)-a |
MR-HuBERT Base (5-2-5 lyrs) | Librispeech 960 hr | download | (B.1)-b |
MR-HuBERT Base (6-4-2 lyrs) | Librispeech 960 hr | download | (B.1)-c |
MR-HuBERT Base (3res 3-2-2-2-3 lyrs) | Librispeech 960 hr | download | (B.2)-a |
MR-HuBERT Base (3res 2-2-4-2-2 lyrs) | Librispeech 960 hr | download | (B.2)-b |
MR-HuBERT Base (3res 2-2-2-2-2 lyrs) | Librispeech 960 hr | download | (B.2)-c |
MR-HuBERT Base (Simple sampling) | Librispeech 960 hr | download | (B.3)-a |
MR-HuBERT Base (Single target) | Librispeech 960 hr | download | (B.4)-a |
MR-HuBERT Base (Simple Sampling + single target) | Librispeech 960 hr | download | (B.4)-b |
MR-HuBERT Base (Mono-resolution 20ms) | Librispeech 960 hr | download | (B.5)-a |
MR-HuBERT Base (3-3-3 lyrs) | Librispeech 960 hr | download | (B.6)-a |
MR-HuBERT Base (Mono-resolution 20ms, 3-3-3 lyrs) | Librispeech 960 hr | download | (B.6)-b |
MR-HuBERT Base (HuBERT 20ms&40ms units) | Librispeech 960 hr | download | (B.7)-a |
MR-HuBERT Base (Encodec 50Hz unit) | Librispeech 960 hr | download | (B.7)-b |
MR-HuBERT Base (Encodec 50Hz units and 25Hz units) | Librispeech 960 hr | download | (B.7)-c |
MR-HuBERT Base (Encodec 50Hz units stream 0&1 ) | Librispeech 960 hr | download | (B.7)-d |
MR-HuBERT Large (no audio norm) | LibriLight 60k hr | download | (B.8)-a |
MR-HuBERT Large (check paper ) | LibriLight 60k hr | download | (B.8)-b |
MR-HuBERT Large (check paper ) | LibriLight 60k hr | download | (B.8)-c |
MR-HuBERT Large (check paper ) | LibriLight 60k hr | download | (B.8)-d |
MR-HuBERT Large (check paper ) | LibriLight 60k hr | download | (B.8)-e |
MR-HuBERT Large (check paper ) | LibriLight 60k hr | download | (B.8)-f |
MR-HuBERT Large (check paper ) | LibriLight 60k hr | download | (B.8)-g |
MR-HuBERT Large (check paper ) | LibriLight 60k hr | download | (B.8)-h |
MR-HuBERT Large (check paper ) | LibriLight 60k hr | download | (B.8)-i |
MR-HuBERT Large (check paper ) | LibriLight 60k hr | download | (B.8)-j |
Multilingual MR-HuBERT Large (Simple sampling) | Voxpopuli 100k hr | download | Not in paper |
MR-HuBERT xLarge (from HuBERT-base label) | LibriLight 60k hr | download | Not in paper |
MR-HuBERT xLarge (from HuBERT-large label) | LibriLight 60k hr | download | Not in paper |
ckpt_path = "/path/to/the/checkpoint.pt"
models, cfg, task = fairseq.checkpoint_utils.load_model_ensemble_and_task([ckpt_path])
model = models[0]
Follow the steps in ./simple_kmeans
to create:
{train,valid}.tsv
waveform list files with length information
/path/to/your/audio/files
file1.wav\t160000
file2.wav\t154600
...
filen.wav\t54362
{train,valid}.km
frame-aligned pseudo label files (the order is the same as wavefiles in the tsv file).
44 44 44 48 48 962 962 962 962 962 962 962 962 967 967 967 967 967 967 967 967 370 852 370 ... 18 18 745 745
44 44 44 48 48 962 962 962 147 147 147 147 147 147 147 147 147 147 147 147 176 176 271 271 ... 27 27 745 745
...
44 44 44 48 962 962 962 962 962 962 377 377 377 77 77 852 696 694 433 578 578 82 740 622 ... 27 27 745 745
dict.km.txt
a dummy dictionary (first column is id, the second is dummy one)
0 1
1 1
2 1
...
999 1
The label_rate
is the same as the feature frame rate used for clustering,
which is 100Hz for MFCC features and 50Hz for HuBERT features by default.
Suppose {train,valid}.tsv
are saved at /path/to/data
, {train,valid}.km
are saved at /path/to/labels
, and the label rate is 100Hz.
To train a base model (12 layer transformer), run:
$ python fairseq_cli/hydra_train.py \
--config-dir /path/to/fairseq-py/examples/mr_hubert/config/pretrain \
--config-name mrhubert_base_librispeech \
task.data=/path/to/data task.label_dir=/path/to/labels \
task.labels='["km"]' model.label_rate=100 \
task.label_rate_ratios='[1, 2]' \
Please see sample pre-training scripts train.sh
for an example script.
Suppose {train,valid}.tsv
are saved at /path/to/data
, and their
corresponding character transcripts {train,valid}.ltr
are saved at
/path/to/trans
. A typical ltr file is with the same order of tsv waveform files as
HOW | ARE | YOU
...
THANK | YOU
To fine-tune a pre-trained MR-HuBERT model at /path/to/checkpoint
, run
$ python fairseq_cli/hydra_train.py \
--config-dir /path/to/fairseq-py/examples/mr_hubert/config/finetune \
--config-name base_10h \
task.data=/path/to/data task.label_dir=/path/to/trans \
model.w2v_path=/path/to/checkpoint
Please see sample fine-tuning scripts finetune.sh
for an example script.
Suppose the test.tsv
and test.ltr
are the waveform list and transcripts of
the split to be decoded, saved at /path/to/data
, and the fine-tuned model is
saved at /path/to/checkpoint
.
We support three decoding modes:
- Viterbi decoding: greedy decoding without a language model
- KenLM decoding: decoding with an arpa-format KenLM n-gram language model
- Fairseq-LM deocding: decoding with a Fairseq neural language model (not fully tested)
task.normalize
needs to be consistent with the value used during fine-tuning.
Decoding results will be saved at
/path/to/experiment/directory/decode/viterbi/test
.
$ python examples/speech_recognition/new/infer.py \
--config-dir /path/to/fairseq-py/examples/mr_hubert/config/decode \
--config-name infer \
task.data=/path/to/data \
task.normalize=[true|false] \
decoding.exp_dir=/path/to/experiment/directory \
common_eval.path=/path/to/checkpoint
dataset.gen_subset=test \
Suppose the pronunciation lexicon and the n-gram LM are saved at
/path/to/lexicon
and /path/to/arpa
, respectively. Decoding results will be
saved at /path/to/experiment/directory/decode/kenlm/test
.
$ python examples/speech_recognition/new/infer.py \
--config-dir /path/to/fairseq-py/examples/mr_hubert/config/decode \
--config-name infer_lm \
task.data=/path/to/data \
task.normalize=[true|false] \
decoding.exp_dir=/path/to/experiment/directory \
common_eval.path=/path/to/checkpoint
dataset.gen_subset=test \
decoding.decoder.lexicon=/path/to/lexicon \
decoding.decoder.lmpath=/path/to/arpa
The command above uses the default decoding hyperparameter, which can be found
in examples/speech_recognition/hydra/decoder.py
. These parameters can be
configured from the command line. For example, to search with a beam size of
500, we can append the command above with decoding.decoder.beam=500
.
Important parameters include:
- decoding.decoder.beam
- decoding.decoder.beamthreshold
- decoding.decoder.lmweight
- decoding.decoder.wordscore
- decoding.decoder.silweight
To decode with a Fairseq LM, you may check the usage examples in wav2vec2 or hubert examples.
Please see sample decoding scripts decode.sh
for an example script.