forked from Significant-Gravitas/AutoGPT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbrowse.py
115 lines (82 loc) · 3.07 KB
/
browse.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
import requests
from bs4 import BeautifulSoup
from config import Config
from llm_utils import create_chat_completion
cfg = Config()
def scrape_text(url):
response = requests.get(url)
# Check if the response contains an HTTP error
if response.status_code >= 400:
return "Error: HTTP " + str(response.status_code) + " error"
soup = BeautifulSoup(response.text, "html.parser")
for script in soup(["script", "style"]):
script.extract()
text = soup.get_text()
lines = (line.strip() for line in text.splitlines())
chunks = (phrase.strip() for line in lines for phrase in line.split(" "))
text = '\n'.join(chunk for chunk in chunks if chunk)
return text
def extract_hyperlinks(soup):
hyperlinks = []
for link in soup.find_all('a', href=True):
hyperlinks.append((link.text, link['href']))
return hyperlinks
def format_hyperlinks(hyperlinks):
formatted_links = []
for link_text, link_url in hyperlinks:
formatted_links.append(f"{link_text} ({link_url})")
return formatted_links
def scrape_links(url):
response = requests.get(url)
# Check if the response contains an HTTP error
if response.status_code >= 400:
return "error"
soup = BeautifulSoup(response.text, "html.parser")
for script in soup(["script", "style"]):
script.extract()
hyperlinks = extract_hyperlinks(soup)
return format_hyperlinks(hyperlinks)
def split_text(text, max_length=8192):
paragraphs = text.split("\n")
current_length = 0
current_chunk = []
for paragraph in paragraphs:
if current_length + len(paragraph) + 1 <= max_length:
current_chunk.append(paragraph)
current_length += len(paragraph) + 1
else:
yield "\n".join(current_chunk)
current_chunk = [paragraph]
current_length = len(paragraph) + 1
if current_chunk:
yield "\n".join(current_chunk)
def create_message(chunk, question):
return {
"role": "user",
"content": f"\"\"\"{chunk}\"\"\" Using the above text, please answer the following question: \"{question}\" -- if the question cannot be answered using the text, please summarize the text."
}
def summarize_text(text, question):
if not text:
return "Error: No text to summarize"
text_length = len(text)
print(f"Text length: {text_length} characters")
summaries = []
chunks = list(split_text(text))
for i, chunk in enumerate(chunks):
print(f"Summarizing chunk {i + 1} / {len(chunks)}")
messages = [create_message(chunk, question)]
summary = create_chat_completion(
model=cfg.fast_llm_model,
messages=messages,
max_tokens=300,
)
summaries.append(summary)
print(f"Summarized {len(chunks)} chunks.")
combined_summary = "\n".join(summaries)
messages = [create_message(combined_summary, question)]
final_summary = create_chat_completion(
model=cfg.fast_llm_model,
messages=messages,
max_tokens=300,
)
return final_summary