-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathfunctions.py
327 lines (273 loc) · 11.1 KB
/
functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
import numpy as np
import skimage.io as sio
import json
import cv2
import random
import math
import torch.utils
import torchvision
#import tensorflow as tf
from skimage.transform import resize
#from scipy.misc import imread, imresize
from imageio import imread
import torch
from torchvision.models import resnet18,vgg19,vgg16,resnet34,resnet152,googlenet,alexnet
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
from torchvision import datasets
TORCH_HUB_DIR = './TorchHub'
IMAGENET_VAL_DIR = './dataset/val/'
def normalize(x):
"""
Normalizes a batch of images with size (batch_size, 3, height, width)
by mean and std dev expected by PyTorch models
"""
mean = torch.Tensor([0.485, 0.456, 0.406])
std = torch.Tensor([0.229, 0.224, 0.225])
return (x - mean.type_as(x)[None,:,None,None]) / std.type_as(x)[None,:,None,None]
def validate_arguments(test_model):
models = ['vgg16', 'vgg19', 'googlenet', 'alexnet', 'resnet152','resnet18','resnet34']
if not (test_model in models):
print ('Argument Error: invalid network')
exit(-1)
def get_uap(path,device):
uap = np.load(path)
uap = torch.tensor(uap, device=device)
return uap
def prepare_for_model(args,model_name,device,initialize=True):
'''
Return a pretrained model on device.
'''
if initialize == True:
if args.val_dataset_name == 'imagenet':
args.all_model = [torchvision.models.alexnet(pretrained=True), torchvision.models.vgg16(pretrained=True),
torchvision.models.vgg19(pretrained=True),torchvision.models.resnet152(pretrained=True),
torchvision.models.googlenet(pretrained=True)]
args.all_model_name = ['alexnet', 'vgg16', 'vgg19', 'resnet152', 'googlenet']
args.delta_size = 224
# else:
# cifar_path = 'TorchHub/checkpoints/cifar10/'
# args.all_path = []
# args.all_model_name = ['vgg16', 'vgg19', 'resnet18', 'resnet34', 'resnet152', 'googlenet']
# for i in range(len(args.all_model_name)):
# args.all_path.append(cifar_path + args.all_model_name[i] + '.pth')
# args.all_model = [cifar10_models.VGG('VGG16'), cifar10_models.VGG('VGG19'),
# cifar10_models.ResNet18(), cifar10_models.ResNet34(),
# cifar10_models.ResNet152(), cifar10_models.GoogLeNet()]
# args.delta_size = 32
model_index = args.all_model_name.index(model_name)
if args.val_dataset_name == 'imagenet':
model = args.all_model[model_index].to(device)
# else:
# model = load_model_cifar10(args.all_model[model_index], args.all_path[model_index], device)
return model
def get_data_loader(dataset_name, batch_size=64, shuffle=False,analyze=False):
"""
Returns a dataLoader with validation or test images for dataset name.
"""
transform = transforms.Compose([
transforms.Resize(224),
transforms.CenterCrop(224),
transforms.ToTensor(),
])
cifar_transform = transforms.Compose([
transforms.Resize(32),
transforms.CenterCrop(32),
transforms.ToTensor(),
])
if dataset_name == 'imagenet':
val_dataset = datasets.ImageFolder(
IMAGENET_VAL_DIR,
transform=transform
)
if analyze == True:
dataset = DataLoader(val_dataset, batch_size=batch_size, shuffle=shuffle,
num_workers=0)
return dataset
total_images = len(val_dataset)
subset_size = 50000
assert subset_size <= total_images, "Subset size is larger than the dataset!"
subset_indices = random.sample(range(total_images), subset_size)
subset_dataset = torch.utils.data.Subset(val_dataset, subset_indices)
N = int(subset_size*0.02)
split_sizes = [N, subset_size - N]
split_sizes_test = [N, subset_size[1] - N]
train_dataset, test_dataset = torch.utils.data.random_split(subset_dataset, split_sizes)
#train_dataset, test_dataset = torch.utils.data.random_split(val_dataset, [1000, 49000])
test_dataset, _=torch.utils.data.random_split(test_dataset, split_sizes_test)
#test_dataset, _=torch.utils.data.random_split(test_dataset, [1000, 48000])
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=shuffle,
num_workers=0)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=shuffle,
num_workers=0)
return train_loader,test_loader
# elif dataset_name == 'cifar10':
# test_dataset = datasets.CIFAR10(CIFAR_VAL_DIR, train=False, download=True,transform=cifar_transform)
# test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=shuffle, num_workers=0)
#
# train_dataset = datasets.CIFAR10(CIFAR_VAL_DIR, train=True, download=True, transform=cifar_transform)
#
# if analyze == True:
# train_dataset = torch.utils.data.ConcatDataset([train_dataset,test_dataset])
# train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=shuffle, num_workers=0)
# return train_loader
#
# train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=shuffle, num_workers=0)
# return train_loader,test_loader
else:
return None
def flip(I, flip_p):
if flip_p > 0.5:
return I[:, ::-1, :]
else:
return I
def blur(img_temp, blur_p, blur_val):
if blur_p > 0.5:
return cv2.GaussianBlur(img_temp, (blur_val, blur_val), 1)
else:
return img_temp
def rotate(img_temp, rot, rot_p):
if(rot_p > 0.5):
rows, cols, ind = img_temp.shape
h_pad = int(rows*abs(math.cos(rot/180.0*math.pi)) +
cols*abs(math.sin(rot/180.0*math.pi)))
w_pad = int(cols*abs(math.cos(rot/180.0*math.pi)) +
rows*abs(math.sin(rot/180.0*math.pi)))
final_img = np.zeros((h_pad, w_pad, 3))
final_img[(h_pad-rows)//2:(h_pad+rows)//2, (w_pad-cols) //
2:(w_pad+cols)//2, :] = np.copy(img_temp)
M = cv2.getRotationMatrix2D((w_pad//2, h_pad//2), rot, 1)
final_img = cv2.warpAffine(
final_img, M, (w_pad, h_pad), flags=cv2.INTER_NEAREST)
part_denom = (math.cos(2*rot/180.0*math.pi))
w_inside = int((cols*abs(math.cos(rot/180.0*math.pi)) -
rows*abs(math.sin(rot/180.0*math.pi)))/part_denom)
h_inside = int((rows*abs(math.cos(rot/180.0*math.pi)) -
cols*abs(math.sin(rot/180.0*math.pi)))/part_denom)
final_img = final_img[(h_pad-h_inside)//2:(h_pad+h_inside)//2,
(w_pad - w_inside)//2:(w_pad + w_inside)//2, :].astype('uint8')
return final_img
else:
return img_temp
def rand_crop(img_temp, dim=224):
h = img_temp.shape[0]
w = img_temp.shape[1]
trig_h = trig_w = False
if(h > dim):
h_p = int(random.uniform(0, 1)*(h-dim))
img_temp = img_temp[h_p:h_p+dim, :, :]
elif(h < dim):
trig_h = True
if(w > dim):
w_p = int(random.uniform(0, 1)*(w-dim))
img_temp = img_temp[:, w_p:w_p+dim, :]
elif(w < dim):
trig_w = True
if(trig_h or trig_w):
pad = np.zeros((dim, dim, 3), dtype='uint8')
pad[:, :, 0] += 127
pad[:, :, 1] += 127
pad[:, :, 2] += 127
pad[:img_temp.shape[0], :img_temp.shape[1], :] = img_temp
return pad
else:
return img_temp
def randomizer(img_temp):
dim = 224
flip_p = random.uniform(0, 1)
scale_p = random.uniform(0, 1)
blur_p = random.uniform(0, 1)
blur_val = random.choice([3, 5, 7, 9])
rot_p = np.random.uniform(0, 1)
rot = random.choice([-10, -7, -5, -3, 3, 5, 7, 10])
if(scale_p > .5):
scale = random.uniform(0.75, 1.5)
else:
scale = 1
if(img_temp.shape[0] < img_temp.shape[1]):
ratio = dim*scale/float(img_temp.shape[0])
else:
ratio = dim*scale/float(img_temp.shape[1])
img_temp = cv2.resize(
img_temp, (int(img_temp.shape[1]*ratio), int(img_temp.shape[0]*ratio)))
img_temp = flip(img_temp, flip_p)
img_temp = rotate(img_temp, rot, rot_p)
img_temp = blur(img_temp, blur_p, blur_val)
img_temp = rand_crop(img_temp)
return img_temp
def img_preprocess(im,img_path=None, size=224, augment=False):
'''
A generic preprocessor for the range prior
'''
mean = [127.5,127.5,127.5]
if img_path == None:
img = im
else:
img = imread(img_path)
if augment:
img = randomizer(img)
if len(img.shape) == 2:
img = np.dstack([img, img, img])
resFac = 256.0/min(img.shape[:2])
newSize = list(map(int, (img.shape[0]*resFac, img.shape[1]*resFac)))
img = resize(img, newSize, mode='constant', preserve_range=True)
offset = [newSize[0]/2.0 -
np.floor(size/2.0), newSize[1]/2.0-np.floor(size/2.0)]
img = img[int(offset[0]):int(offset[0])+size,
int(offset[1]):int(offset[1])+size, :]
img[:, :, 0] -= mean[2]
img[:, :, 1] -= mean[1]
img[:, :, 2] -= mean[0]
img[:, :, [0, 1, 2]] = img[:, :, [2, 1, 0]]
img = np.reshape(img, [1, size, size, 3])
return img
def downsample(inp):
return np.reshape(inp[1:-2, 1:-2, :], [1, 224, 224, 3])
def upsample(inp):
out = np.zeros([227, 227, 3])
out[1:-2, 1:-2, :] = inp
out[0, 1:-2, :] = inp[0, :, :]
out[-2, 1:-2, :] = inp[-1, :, :]
out[-1, 1:-2, :] = inp[-1, :, :]
out[:, 0, :] = out[:, 1, :]
out[:, -2, :] = out[:, -3, :]
out[:, -1, :] = out[:, -3, :]
return np.reshape(out, [1, 227, 227, 3])
def make_some_noise_gauss(std,size):
'''
The range prior for input with gauss noise
'''
mean = [127.5,127.5,127.5]
sd = [std,std+10,std+20]
im = np.zeros((size, size, 3))
for i in range(3):
im[:, :, i] = np.random.normal(
loc=mean[i], scale=sd[i], size=(size, size))
im = np.clip(im, 0, 255)
return im
def get_ranlist(num,min=0,max=225):
list = [min]
for i in range(num):
x = random.randrange(min,max,step=1)
list.append(x)
return sorted(list)
def shuffle(img,wide=5,high=7,min=0,max=256,bound=224):
#assert mode in [0, 1], 'check shuffle mode'
wide_list = get_ranlist(wide,max=bound+1)
high_list = get_ranlist(high,max=bound+1)
for i in range(len(wide_list)):
w_start = wide_list[i]
if i < len(wide_list)-1:
w_end = wide_list[i + 1]
else:
w_end = bound
for j in range(len(high_list)):
h_start = high_list[j]
if j <len(high_list)-1:
h_end = high_list[j+1]
else:
h_end = bound
img[0, w_start:w_end, h_start:h_end] = random.randrange(min,max,1)
img[1, w_start:w_end, h_start:h_end] = random.randrange(min,max,1)
img[2, w_start:w_end, h_start:h_end] = random.randrange(min,max,1)
return img