-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
173 lines (138 loc) · 6.73 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import os
import sys
import time
import shutil
import logging
import argparse
import cv2
import torch
import torch.nn as nn
import numpy as np
from tqdm import tqdm
from models.ooal import Net as model
from utils.viz import viz_pred_test
from utils.util import set_seed, process_gt, normalize_map, get_optimizer
from utils.evaluation import cal_kl, cal_sim, cal_nss
parser = argparse.ArgumentParser()
## path
parser.add_argument('--data_root', type=str, default='./dataset/')
parser.add_argument('--save_root', type=str, default='save_models')
## image
parser.add_argument('--divide', type=str, default='Seen')
parser.add_argument('--crop_size', type=int, default=224)
parser.add_argument('--resize_size', type=int, default=256)
## dataloader
parser.add_argument('--num_workers', type=int, default=8)
## train
parser.add_argument('--batch_size', type=int, default=1)
parser.add_argument('--warm_epoch', type=int, default=0)
parser.add_argument('--iters', type=int, default=20000)
parser.add_argument('--lr', type=float, default=0.01)
parser.add_argument('--momentum', type=float, default=0.9)
parser.add_argument('--weight_decay', type=float, default=5e-4)
parser.add_argument('--show_step', type=int, default=100)
parser.add_argument('--eval_step', type=int, default=2000)
parser.add_argument('--gpu', type=str, default='0')
parser.add_argument('--viz', action='store_true', default=False)
#### test
parser.add_argument("--test_batch_size", type=int, default=1)
parser.add_argument('--test_num_workers', type=int, default=8)
args = parser.parse_args()
torch.cuda.set_device('cuda:' + args.gpu)
time_str = time.strftime('%Y%m%d_%H%M%S', time.localtime(time.time()))
args.save_path = os.path.join(args.save_root, time_str)
args.mask_root = os.path.join(args.data_root, args.divide, "testset", "GT")
if not os.path.exists(args.save_path):
os.makedirs(args.save_path, exist_ok=True)
dict_args = vars(args)
str_1 = ""
for key, value in dict_args.items():
str_1 += key + "=" + str(value) + "\n"
logging.basicConfig(filename='%s/run.log' % args.save_path, level=logging.INFO, format='%(message)s')
logger = logging.getLogger()
logger.addHandler(logging.StreamHandler(sys.stdout))
logger.info(str_1)
if __name__ == '__main__':
set_seed(seed=321)
from data.agd20k_ego import TrainData, TestData, SEEN_AFF, UNSEEN_AFF
args.class_names = SEEN_AFF if args.divide == 'Seen' else UNSEEN_AFF
trainset = TrainData(data_root=args.data_root,
divide=args.divide,
resize_size=args.resize_size,
crop_size=args.crop_size)
TrainLoader = torch.utils.data.DataLoader(dataset=trainset,
batch_size=args.batch_size,
shuffle=True,
num_workers=args.num_workers,
pin_memory=True)
testset = TestData(data_root=args.data_root, divide=args.divide, crop_size=args.crop_size)
TestLoader = torch.utils.data.DataLoader(dataset=testset,
batch_size=args.test_batch_size,
shuffle=False,
num_workers=args.test_num_workers,
pin_memory=True)
model = model(args, 768, 512).cuda()
model.train()
optimizer, scheduler = get_optimizer(model, args)
best_kld = 1000
total_iter = 0
print('Train begining!')
while True:
for _, (img, ann) in enumerate(TrainLoader):
img, ann = img.cuda(), ann.cuda().float()
pred, loss_dict = model(img, label=ann)
loss = sum(loss_dict.values())
optimizer.zero_grad()
loss.backward()
optimizer.step()
scheduler.step()
if (total_iter + 1) % args.show_step == 0:
log_str = 'iters: %d/%d | ' % (total_iter + 1, args.iters)
log_str += ' | '.join(['%s: %.3f' % (k, v) for k, v in loss_dict.items()])
log_str += ' | '
log_str += 'lr {:.6f}'.format(scheduler.get_last_lr()[0])
logger.info(log_str)
total_iter += 1
if (total_iter + 1) % args.eval_step == 0:
KLs, SIM, NSS = [], [], []
model.eval()
GT_path = args.divide + "_gt.t7"
if not os.path.exists(GT_path):
process_gt(args)
GT_masks = torch.load(GT_path)
for step, (image, gt_aff, object, mask_path) in enumerate(tqdm(TestLoader)):
ego_pred = model(image.cuda(), gt_aff=gt_aff)
ego_pred = np.array(ego_pred.squeeze().data.cpu())
ego_pred = normalize_map(ego_pred, args.crop_size)
names = mask_path[0].split("/")
key = names[-3] + "_" + names[-2] + "_" + names[-1]
GT_mask = GT_masks[key]
GT_mask = GT_mask / 255.0
GT_mask = cv2.resize(GT_mask, (args.crop_size, args.crop_size))
kld, sim, nss = cal_kl(ego_pred, GT_mask), cal_sim(ego_pred, GT_mask), cal_nss(ego_pred, GT_mask)
KLs.append(kld)
SIM.append(sim)
NSS.append(nss)
# Visualization the prediction during evaluation
if args.viz:
if (step + 1) % 40 == 0:
img_name = key.split(".")[0]
viz_pred_test(args, image, ego_pred, GT_mask, args.class_names, gt_aff, img_name, total_iter)
mKLD, mSIM, mNSS = sum(KLs) / len(KLs), sum(SIM) / len(SIM), sum(NSS) / len(NSS)
logger.info(
"iter=" + str(total_iter + 1) + ' | ' + args.divide + ": mKLD = " + str(round(mKLD, 3))
+ " mSIM = " + str(round(mSIM, 3)) + " mNSS = " + str(round(mNSS, 3)) + " bestKLD = " + str(round(best_kld, 3))
)
if mKLD < best_kld:
best_kld = mKLD
model_name = 'best_model_' + str(total_iter + 1) + '_' + str(round(best_kld, 3)) \
+ '_' + str(round(mSIM, 3)) \
+ '_' + str(round(mNSS, 3)) \
+ '.pth'
torch.save({'iter': total_iter,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict()},
os.path.join(args.save_path, model_name))
model.train()
if (total_iter + 1) >= args.iters:
exit()