forked from apple/darwin-xnu
-
Notifications
You must be signed in to change notification settings - Fork 0
/
corpse.c
727 lines (649 loc) · 22.3 KB
/
corpse.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
/*
* Copyright (c) 2012-2013, 2015 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* compliance with the License. The rights granted to you under the License
* may not be used to create, or enable the creation or redistribution of,
* unlawful or unlicensed copies of an Apple operating system, or to
* circumvent, violate, or enable the circumvention or violation of, any
* terms of an Apple operating system software license agreement.
*
* Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this file.
*
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
/*
* Corpses Overview
* ================
*
* A corpse is a state of process that is past the point of its death. This means that process has
* completed all its termination operations like releasing file descriptors, mach ports, sockets and
* other constructs used to identify a process. For all the processes this mimics the behavior as if
* the process has died and no longer available by any means.
*
* Why do we need Corpses?
* -----------------------
* For crash inspection we need to inspect the state and data that is associated with process so that
* crash reporting infrastructure can build backtraces, find leaks etc. For example a crash
*
* Corpses functionality in kernel
* ===============================
* The corpse functionality is an extension of existing exception reporting mechanisms we have. The
* exception_triage calls will try to deliver the first round of exceptions allowing
* task/debugger/ReportCrash/launchd level exception handlers to respond to exception. If even after
* notification the exception is not handled, then the process begins the death operations and during
* proc_prepareexit, we decide to create a corpse for inspection. Following is a sample run through
* of events and data shuffling that happens when corpses is enabled.
*
* * a process causes an exception during normal execution of threads.
* * The exception generated by either mach(e.g GUARDED_MARCHPORT) or bsd(eg SIGABORT, GUARDED_FD
* etc) side is passed through the exception_triage() function to follow the thread -> task -> host
* level exception handling system. This set of steps are same as before and allow for existing
* crash reporting systems (both internal and 3rd party) to catch and create reports as required.
* * If above exception handling returns failed (when nobody handles the notification), then the
* proc_prepareexit path has logic to decide to create corpse.
* * The task_mark_corpse function allocates userspace vm memory and attaches the information
* kcdata_descriptor_t to task->corpse_info field of task.
* - All the task's threads are marked with the "inspection" flag which signals the termination
* daemon to not reap them but hold until they are being inspected.
* - task flags t_flags reflect the corpse bit and also a PENDING_CORPSE bit. PENDING_CORPSE
* prevents task_terminate from stripping important data from task.
* - It marks all the threads to terminate and return to AST for termination.
* - The allocation logic takes into account the rate limiting policy of allowing only
* TOTAL_CORPSES_ALLOWED in flight.
* * The proc exit threads continues and collects required information in the allocated vm region.
* Once complete it marks itself for termination.
* * In the thread_terminate_self(), the last thread to enter will do a call to proc_exit().
* Following this is a check to see if task is marked for corpse notification and will
* invoke the the task_deliver_crash_notification().
* * Once EXC_CORPSE_NOTIFY is delivered, it removes the PENDING_CORPSE flag from task (and
* inspection flag from all its threads) and allows task_terminate to go ahead and continue
* the mach task termination process.
* * ASIDE: The rest of the threads that are reaching the thread_terminate_daemon() with the
* inspection flag set are just bounced to another holding queue (crashed_threads_queue).
* Only after the corpse notification these are pulled out from holding queue and enqueued
* back to termination queue
*
*
* Corpse info format
* ==================
* The kernel (task_mark_corpse()) makes a vm allocation in the dead task's vm space (with tag
* VM_MEMORY_CORPSEINFO (80)). Within this memory all corpse information is saved by various
* subsystems like
* * bsd proc exit path may write down pid, parent pid, number of file descriptors etc
* * mach side may append data regarding ledger usage, memory stats etc
* See detailed info about the memory structure and format in kern_cdata.h documentation.
*
* Configuring Corpses functionality
* =================================
* boot-arg: -no_corpses disables the corpse generation. This can be added/removed without affecting
* any other subsystem.
* TOTAL_CORPSES_ALLOWED : (recompilation required) - Changing this number allows for controlling
* the number of corpse instances to be held for inspection before allowing memory to be reclaimed
* by system.
* CORPSEINFO_ALLOCATION_SIZE: is the default size of vm allocation. If in future there is much more
* data to be put in, then please re-tune this parameter.
*
* Debugging/Visibility
* ====================
* * lldbmacros for thread and task summary are updated to show "C" flag for corpse task/threads.
* * there are macros to see list of threads in termination queue (dumpthread_terminate_queue)
* and holding queue (dumpcrashed_thread_queue).
* * In case of corpse creation is disabled of ignored then the system log is updated with
* printf data with reason.
*
* Limitations of Corpses
* ======================
* With holding off memory for inspection, it creates vm pressure which might not be desirable
* on low memory devices. There are limits to max corpses being inspected at a time which is
* marked by TOTAL_CORPSES_ALLOWED.
*
*/
#include <stdatomic.h>
#include <kern/assert.h>
#include <mach/mach_types.h>
#include <mach/boolean.h>
#include <mach/vm_param.h>
#include <kern/kern_types.h>
#include <kern/mach_param.h>
#include <kern/thread.h>
#include <kern/task.h>
#include <corpses/task_corpse.h>
#include <kern/kalloc.h>
#include <kern/kern_cdata.h>
#include <mach/mach_vm.h>
#include <kern/exc_guard.h>
#if CONFIG_MACF
#include <security/mac_mach_internal.h>
#endif
/*
* Exported interfaces
*/
#include <mach/task_server.h>
union corpse_creation_gate {
struct {
uint16_t user_faults;
uint16_t corpses;
};
uint32_t value;
};
static _Atomic uint32_t inflight_corpses;
unsigned long total_corpses_created = 0;
boolean_t corpse_enabled_config = TRUE;
/* bootarg to turn on corpse forking for EXC_RESOURCE */
int exc_via_corpse_forking = 1;
/* bootarg to generate corpse for fatal high memory watermark violation */
int corpse_for_fatal_memkill = 1;
#ifdef __arm__
static inline int IS_64BIT_PROCESS(__unused void *p) { return 0; }
#else
extern int IS_64BIT_PROCESS(void *);
#endif /* __arm__ */
extern void gather_populate_corpse_crashinfo(void *p, task_t task,
mach_exception_data_type_t code, mach_exception_data_type_t subcode,
uint64_t *udata_buffer, int num_udata, void *reason);
extern void *proc_find(int pid);
extern int proc_rele(void *p);
void corpses_init(){
char temp_buf[20];
int exc_corpse_forking;
int fatal_memkill;
if (PE_parse_boot_argn("-no_corpses", temp_buf, sizeof(temp_buf))) {
corpse_enabled_config = FALSE;
}
if (PE_parse_boot_argn("exc_via_corpse_forking", &exc_corpse_forking, sizeof(exc_corpse_forking))) {
exc_via_corpse_forking = exc_corpse_forking;
}
if (PE_parse_boot_argn("corpse_for_fatal_memkill", &fatal_memkill, sizeof(fatal_memkill))) {
corpse_for_fatal_memkill = fatal_memkill;
}
}
/*
* Routine: corpses_enabled
* returns FALSE if not enabled
*/
boolean_t corpses_enabled()
{
return corpse_enabled_config;
}
unsigned long
total_corpses_count(void)
{
union corpse_creation_gate gate;
gate.value = atomic_load_explicit(&inflight_corpses, memory_order_relaxed);
return gate.corpses;
}
/*
* Routine: task_crashinfo_get_ref()
* Grab a slot at creating a corpse.
* Returns: KERN_SUCCESS if the policy allows for creating a corpse.
*/
static kern_return_t
task_crashinfo_get_ref(uint16_t kcd_u_flags)
{
union corpse_creation_gate oldgate, newgate;
assert(kcd_u_flags & CORPSE_CRASHINFO_HAS_REF);
oldgate.value = atomic_load_explicit(&inflight_corpses, memory_order_relaxed);
for (;;) {
newgate = oldgate;
if (kcd_u_flags & CORPSE_CRASHINFO_USER_FAULT) {
if (newgate.user_faults++ >= TOTAL_USER_FAULTS_ALLOWED) {
return KERN_RESOURCE_SHORTAGE;
}
}
if (newgate.corpses++ >= TOTAL_CORPSES_ALLOWED) {
return KERN_RESOURCE_SHORTAGE;
}
// this reloads the value in oldgate
if (atomic_compare_exchange_strong_explicit(&inflight_corpses,
&oldgate.value, newgate.value, memory_order_relaxed,
memory_order_relaxed)) {
return KERN_SUCCESS;
}
}
}
/*
* Routine: task_crashinfo_release_ref
* release the slot for corpse being used.
*/
static kern_return_t
task_crashinfo_release_ref(uint16_t kcd_u_flags)
{
union corpse_creation_gate oldgate, newgate;
assert(kcd_u_flags & CORPSE_CRASHINFO_HAS_REF);
oldgate.value = atomic_load_explicit(&inflight_corpses, memory_order_relaxed);
for (;;) {
newgate = oldgate;
if (kcd_u_flags & CORPSE_CRASHINFO_USER_FAULT) {
if (newgate.user_faults-- == 0) {
panic("corpse in flight count over-release");
}
}
if (newgate.corpses-- == 0) {
panic("corpse in flight count over-release");
}
// this reloads the value in oldgate
if (atomic_compare_exchange_strong_explicit(&inflight_corpses,
&oldgate.value, newgate.value, memory_order_relaxed,
memory_order_relaxed)) {
return KERN_SUCCESS;
}
}
}
kcdata_descriptor_t
task_crashinfo_alloc_init(mach_vm_address_t crash_data_p, unsigned size,
uint32_t kc_u_flags, unsigned kc_flags)
{
kcdata_descriptor_t kcdata;
if (kc_u_flags & CORPSE_CRASHINFO_HAS_REF) {
if (KERN_SUCCESS != task_crashinfo_get_ref(kc_u_flags)) {
return NULL;
}
}
kcdata = kcdata_memory_alloc_init(crash_data_p, TASK_CRASHINFO_BEGIN, size,
kc_flags);
if (kcdata) {
kcdata->kcd_user_flags = kc_u_flags;
} else if (kc_u_flags & CORPSE_CRASHINFO_HAS_REF) {
task_crashinfo_release_ref(kc_u_flags);
}
return kcdata;
}
/*
* Free up the memory associated with task_crashinfo_data
*/
kern_return_t
task_crashinfo_destroy(kcdata_descriptor_t data)
{
if (!data) {
return KERN_INVALID_ARGUMENT;
}
if (data->kcd_user_flags & CORPSE_CRASHINFO_HAS_REF) {
task_crashinfo_release_ref(data->kcd_user_flags);
}
return kcdata_memory_destroy(data);
}
/*
* Routine: task_get_corpseinfo
* params: task - task which has corpse info setup.
* returns: crash info data attached to task.
* NULL if task is null or has no corpse info
*/
kcdata_descriptor_t task_get_corpseinfo(task_t task)
{
kcdata_descriptor_t retval = NULL;
if (task != NULL){
retval = task->corpse_info;
}
return retval;
}
/*
* Routine: task_add_to_corpse_task_list
* params: task - task to be added to corpse task list
* returns: None.
*/
void
task_add_to_corpse_task_list(task_t corpse_task)
{
lck_mtx_lock(&tasks_corpse_lock);
queue_enter(&corpse_tasks, corpse_task, task_t, corpse_tasks);
lck_mtx_unlock(&tasks_corpse_lock);
}
/*
* Routine: task_remove_from_corpse_task_list
* params: task - task to be removed from corpse task list
* returns: None.
*/
void
task_remove_from_corpse_task_list(task_t corpse_task)
{
lck_mtx_lock(&tasks_corpse_lock);
queue_remove(&corpse_tasks, corpse_task, task_t, corpse_tasks);
lck_mtx_unlock(&tasks_corpse_lock);
}
/*
* Routine: task_purge_all_corpses
* params: None.
* returns: None.
*/
void
task_purge_all_corpses(void)
{
task_t task;
printf("Purging corpses......\n\n");
lck_mtx_lock(&tasks_corpse_lock);
/* Iterate through all the corpse tasks and clear all map entries */
queue_iterate(&corpse_tasks, task, task_t, corpse_tasks) {
vm_map_remove(task->map,
task->map->min_offset,
task->map->max_offset,
/*
* Final cleanup:
* + no unnesting
* + remove immutable mappings
*/
(VM_MAP_REMOVE_NO_UNNESTING |
VM_MAP_REMOVE_IMMUTABLE));
}
lck_mtx_unlock(&tasks_corpse_lock);
}
/*
* Routine: task_generate_corpse
* params: task - task to fork a corpse
* corpse_task - task port of the generated corpse
* returns: KERN_SUCCESS on Success.
* KERN_FAILURE on Failure.
* KERN_NOT_SUPPORTED on corpse disabled.
* KERN_RESOURCE_SHORTAGE on memory alloc failure or reaching max corpse.
*/
kern_return_t
task_generate_corpse(
task_t task,
ipc_port_t *corpse_task_port)
{
task_t new_task;
kern_return_t kr;
thread_t thread, th_iter;
ipc_port_t corpse_port;
ipc_port_t old_notify;
if (task == kernel_task || task == TASK_NULL || task == current_task()) {
return KERN_INVALID_ARGUMENT;
}
task_lock(task);
if (task_is_a_corpse_fork(task)) {
task_unlock(task);
return KERN_INVALID_ARGUMENT;
}
task_unlock(task);
/* Generate a corpse for the given task, will return with a ref on corpse task */
kr = task_generate_corpse_internal(task, &new_task, &thread, 0, 0, 0, NULL);
if (kr != KERN_SUCCESS) {
return kr;
}
assert(thread == THREAD_NULL);
/* wait for all the threads in the task to terminate */
task_lock(new_task);
task_wait_till_threads_terminate_locked(new_task);
/* Reset thread ports of all the threads in task */
queue_iterate(&new_task->threads, th_iter, thread_t, task_threads)
{
/* Do not reset the thread port for inactive threads */
if (th_iter->corpse_dup == FALSE) {
ipc_thread_reset(th_iter);
}
}
task_unlock(new_task);
/* transfer the task ref to port and arm the no-senders notification */
corpse_port = convert_task_to_port(new_task);
assert(IP_NULL != corpse_port);
ip_lock(corpse_port);
assert(ip_active(corpse_port));
ipc_port_nsrequest(corpse_port, corpse_port->ip_mscount, ipc_port_make_sonce_locked(corpse_port), &old_notify);
/* port unlocked */
assert(IP_NULL == old_notify);
*corpse_task_port = corpse_port;
return KERN_SUCCESS;
}
/*
* Routine: task_enqueue_exception_with_corpse
* params: task - task to generate a corpse and enqueue it
* etype - EXC_RESOURCE or EXC_GUARD
* code - exception code to be enqueued
* codeCnt - code array count - code and subcode
*
* returns: KERN_SUCCESS on Success.
* KERN_FAILURE on Failure.
* KERN_INVALID_ARGUMENT on invalid arguments passed.
* KERN_NOT_SUPPORTED on corpse disabled.
* KERN_RESOURCE_SHORTAGE on memory alloc failure or reaching max corpse.
*/
kern_return_t
task_enqueue_exception_with_corpse(
task_t task,
exception_type_t etype,
mach_exception_data_t code,
mach_msg_type_number_t codeCnt,
void *reason)
{
task_t new_task = TASK_NULL;
thread_t thread = THREAD_NULL;
kern_return_t kr;
if (codeCnt < 2) {
return KERN_INVALID_ARGUMENT;
}
/* Generate a corpse for the given task, will return with a ref on corpse task */
kr = task_generate_corpse_internal(task, &new_task, &thread,
etype, code[0], code[1], reason);
if (kr == KERN_SUCCESS) {
assert(thread != THREAD_NULL);
assert(new_task != TASK_NULL);
assert(etype == EXC_RESOURCE || etype == EXC_GUARD);
thread_exception_enqueue(new_task, thread, etype);
}
return kr;
}
/*
* Routine: task_generate_corpse_internal
* params: task - task to fork a corpse
* corpse_task - task of the generated corpse
* exc_thread - equivalent thread in corpse enqueuing exception
* etype - EXC_RESOURCE or EXC_GUARD or 0
* code - mach exception code to be passed in corpse blob
* subcode - mach exception subcode to be passed in corpse blob
* returns: KERN_SUCCESS on Success.
* KERN_FAILURE on Failure.
* KERN_NOT_SUPPORTED on corpse disabled.
* KERN_RESOURCE_SHORTAGE on memory alloc failure or reaching max corpse.
*/
kern_return_t
task_generate_corpse_internal(
task_t task,
task_t *corpse_task,
thread_t *exc_thread,
exception_type_t etype,
mach_exception_data_type_t code,
mach_exception_data_type_t subcode,
void *reason)
{
task_t new_task = TASK_NULL;
thread_t thread = THREAD_NULL;
thread_t thread_next = THREAD_NULL;
kern_return_t kr;
struct proc *p = NULL;
int is64bit;
int t_flags;
uint64_t *udata_buffer = NULL;
int size = 0;
int num_udata = 0;
uint16_t kc_u_flags = CORPSE_CRASHINFO_HAS_REF;
#if CONFIG_MACF
struct label *label = NULL;
#endif
if (!corpses_enabled()) {
return KERN_NOT_SUPPORTED;
}
if (etype == EXC_GUARD && EXC_GUARD_DECODE_GUARD_TYPE(code) == GUARD_TYPE_USER) {
kc_u_flags |= CORPSE_CRASHINFO_USER_FAULT;
}
kr = task_crashinfo_get_ref(kc_u_flags);
if (kr != KERN_SUCCESS) {
return kr;
}
/* Having a task reference does not guarantee a proc reference */
p = proc_find(task_pid(task));
if (p == NULL) {
kr = KERN_INVALID_TASK;
goto error_task_generate_corpse;
}
is64bit = IS_64BIT_PROCESS(p);
t_flags = TF_CORPSE_FORK | TF_PENDING_CORPSE | TF_CORPSE | (is64bit ? TF_64B_ADDR : TF_NONE);
#if CONFIG_MACF
/* Create the corpse label credentials from the process. */
label = mac_exc_create_label_for_proc(p);
#endif
/* Create a task for corpse */
kr = task_create_internal(task,
NULL,
TRUE,
is64bit,
t_flags,
TPF_NONE,
&new_task);
if (kr != KERN_SUCCESS) {
goto error_task_generate_corpse;
}
/* Create and copy threads from task, returns a ref to thread */
kr = task_duplicate_map_and_threads(task, p, new_task, &thread,
&udata_buffer, &size, &num_udata);
if (kr != KERN_SUCCESS) {
goto error_task_generate_corpse;
}
kr = task_collect_crash_info(new_task,
#if CONFIG_MACF
label,
#endif
TRUE);
if (kr != KERN_SUCCESS) {
goto error_task_generate_corpse;
}
/* transfer our references to the corpse info */
assert(new_task->corpse_info->kcd_user_flags == 0);
new_task->corpse_info->kcd_user_flags = kc_u_flags;
kc_u_flags = 0;
kr = task_start_halt(new_task);
if (kr != KERN_SUCCESS) {
goto error_task_generate_corpse;
}
/* terminate the ipc space */
ipc_space_terminate(new_task->itk_space);
/* Populate the corpse blob, use the proc struct of task instead of corpse task */
gather_populate_corpse_crashinfo(p, new_task,
code, subcode, udata_buffer, num_udata, reason);
/* Add it to global corpse task list */
task_add_to_corpse_task_list(new_task);
*corpse_task = new_task;
*exc_thread = thread;
error_task_generate_corpse:
#if CONFIG_MACF
if (label) {
mac_exc_free_label(label);
}
#endif
/* Release the proc reference */
if (p != NULL) {
proc_rele(p);
}
if (kr != KERN_SUCCESS) {
if (thread != THREAD_NULL) {
thread_deallocate(thread);
}
if (new_task != TASK_NULL) {
task_lock(new_task);
/* Terminate all the other threads in the task. */
queue_iterate(&new_task->threads, thread_next, thread_t, task_threads)
{
thread_terminate_internal(thread_next);
}
/* wait for all the threads in the task to terminate */
task_wait_till_threads_terminate_locked(new_task);
task_unlock(new_task);
task_clear_corpse(new_task);
task_terminate_internal(new_task);
task_deallocate(new_task);
}
if (kc_u_flags) {
task_crashinfo_release_ref(kc_u_flags);
}
}
/* Free the udata buffer allocated in task_duplicate_map_and_threads */
if (udata_buffer != NULL) {
kfree(udata_buffer, size);
}
return kr;
}
/*
* Routine: task_map_corpse_info
* params: task - Map the corpse info in task's address space
* corpse_task - task port of the corpse
* kcd_addr_begin - address of the mapped corpse info
* kcd_addr_begin - size of the mapped corpse info
* returns: KERN_SUCCESS on Success.
* KERN_FAILURE on Failure.
* KERN_INVALID_ARGUMENT on invalid arguments.
* Note: Temporary function, will be deleted soon.
*/
kern_return_t
task_map_corpse_info(
task_t task,
task_t corpse_task,
vm_address_t *kcd_addr_begin,
uint32_t *kcd_size)
{
kern_return_t kr;
mach_vm_address_t kcd_addr_begin_64;
mach_vm_size_t size_64;
kr = task_map_corpse_info_64(task, corpse_task, &kcd_addr_begin_64, &size_64);
if (kr != KERN_SUCCESS) {
return kr;
}
*kcd_addr_begin = (vm_address_t)kcd_addr_begin_64;
*kcd_size = (uint32_t) size_64;
return KERN_SUCCESS;
}
/*
* Routine: task_map_corpse_info_64
* params: task - Map the corpse info in task's address space
* corpse_task - task port of the corpse
* kcd_addr_begin - address of the mapped corpse info (takes mach_vm_addess_t *)
* kcd_addr_begin - size of the mapped corpse info (takes mach_vm_size_t *)
* returns: KERN_SUCCESS on Success.
* KERN_FAILURE on Failure.
* KERN_INVALID_ARGUMENT on invalid arguments.
*/
kern_return_t
task_map_corpse_info_64(
task_t task,
task_t corpse_task,
mach_vm_address_t *kcd_addr_begin,
mach_vm_size_t *kcd_size)
{
kern_return_t kr;
mach_vm_offset_t crash_data_ptr = 0;
mach_vm_size_t size = CORPSEINFO_ALLOCATION_SIZE;
void *corpse_info_kernel = NULL;
if (task == TASK_NULL || task_is_a_corpse_fork(task)) {
return KERN_INVALID_ARGUMENT;
}
if (corpse_task == TASK_NULL || !task_is_a_corpse(corpse_task) ||
kcdata_memory_get_begin_addr(corpse_task->corpse_info) == NULL) {
return KERN_INVALID_ARGUMENT;
}
corpse_info_kernel = kcdata_memory_get_begin_addr(corpse_task->corpse_info);
kr = mach_vm_allocate_kernel(task->map, &crash_data_ptr, size,
VM_FLAGS_ANYWHERE, VM_MEMORY_CORPSEINFO);
if (kr != KERN_SUCCESS) {
return kr;
}
copyout(corpse_info_kernel, crash_data_ptr, size);
*kcd_addr_begin = crash_data_ptr;
*kcd_size = size;
return KERN_SUCCESS;
}
uint64_t
task_corpse_get_crashed_thread_id(task_t corpse_task)
{
return corpse_task->crashed_thread_id;
}